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ВВЕДЕНИЕ 

При решении современных задач геодезии, геофизики, геодинамики, 
океанографии и климатологии становится очевидной возрастающая по-
требность в точном определении гравитационного поля Земли. 

В настоящее время глобальная навигационная спутниковая система 
GNSS не только многократно увеличила объем и качество геоинформаци-
онных измерений, но и предоставила возможность получить новую изме-
рительную информацию (например, чистые аномалии силы тяжести), что 
позволило принципиально изменить подходы к решению задач физиче-
ской геодезии, в основе которых лежит теория М. С. Молоденского также 
претерпевшая значительные изменения с развитием GNSS. Так как GNSS-
измерения позволяют создать трехмерную систему пространственных ко-
ординат на всей поверхности Земли, то можно считать её поверхность из-
вестной. То есть от решения краевой задачи с неизвестной краевой по-
верхностью, на которой известны смешанные аномалии силы тяжести, мы 
можем перейти к рассмотрению концепции краевой задачи с фиксирован-
ной границей, то есть полагать, что поверхность Земли известна, и на ней 
известны чистые аномалии силы тяжести. 

Целью данной монографии является не только изложение классиче-
ских методов решения задач физической геодезии, которые не потеряли 
своей актуальности, но также и современных теоретических подходов  
и методов решения задач физической геодезии, основанных на современ-
ных достижениях математики.    

Глава 1 посвящена анализу классических методов представления гра-
витационного поля Земли, включая классическую постановку краевой за-
дачи геодезии, условия её существования и единственности, а также кор-
ректности.  

В данной главе изложены следующие основные классические методы 
решения этой задачи: метод, использующий аппарат рядов по шаровым 
функциям (МРШФ), метод интегральных уравнений (МИУ) и метод 
функций Грина (МФГ).  Подробно рассмотрены достоинства и недостатки 
каждого метода. 

Поскольку часто при решении краевых задач используется сфериче-
ская аппроксимация краевой поверхности, то, естественно, стало класси-
кой представление потенциала в виде рядов по шаро-
вым/эллипсоидальным функциям (МРШФ). Это очень удобный аппарат 
для аналитических и численных исследований. Каждый член такого ряда 
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содержит коэффициент, характеризующий вклад соответствующей шаро-
вой функции в общее поле, и саму шаровую функцию, зависящую от уг-
ловых координат. Однако такое разложение медленно сходится, вслед-
ствие чего при точных исследованиях необходимо учитывать достаточно 
большое число членов ряда. Также важно отметить, что данный метод 
предъявляет высокие требования к исходной информации, которая должна 
быть известна по всей Земле и распределена равномерно. Отмечено, что 
ряды по шаровым функциям не способны отражать локальные особенно-
сти гравитационного поля, то есть ряды по шаровым функциям не подхо-
дят для отображения тонкой структуры поля. Но для моделирования низ-
ких и средних частот этот аппарат приспособлен очень хорошо. 

Методом интегральных уравнений получают классические ряды Мо-
лоденского и Бровара, которые дают теоретически неограниченное повы-
шение точности определения возмущающего потенциала и его трансфор-
мант. Данный метод хорошо зарекомендовал себя в решении краевых за-
дач со сложной краевой поверхностью, отметим, что МРШФ и МФГ  
в этом случае дают плохие результаты. В последнее время для решения 
интегральных уравнений широко используются метод конечных элемен-
тов (МКЭ) и метод граничных элементов (МГЭ), которые позволяют мо-
делировать с высокой разрешающей способностью гравитационное поле 
Земли, учитывая реальную геометрически сложную топографию её по-
верхности. 

Мощным инструментом для решения краевых задач в теории потенци-
ала является МФГ, который позволяет представить решение краевой зада-
чи в виде интегрального уравнения, что упрощает анализ и поиск реше-
ния. Функция Грина специально строится для конкретных граничных 
условий, а это гарантирует, что решение, полученное через функцию Гри-
на, будет удовлетворять заданным условиям. Каждой замкнутой поверх-
ности соответствует своя функция Грина для данной краевой задачи. От-
метим, что построение функции Грина является очень сложной задачей 
для поверхностей, отличающихся от сферы. Даже для эллипсоида функ-
ция Грина имеет очень сложную структуру. Но если она найдена, то дан-
ную краевую задачу можно решать независимо от полноты гравиметриче-
ской информации. 

В данной главе также представлены ряды Молоденского в решении 
краевой задачи GNSS. Рассмотрена постановка скалярной краевой задачи 
физической геодезии, идея которой состоит в рассмотрении задачи, про-
межуточной между задачей со свободной границей и задачей с фиксиро-
ванной границей. 

В двух постановках представлена задача альтиметрии и гравиметрии 
(altimetry-gravimetry problem). 
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В связи с тем, что на современном этапе накопился большой объем 
информации и на одну и ту же территорию, известны различные типы 
геодезической информации, возникает ситуация, при которой исходных 
данных больше, чем требуется для однозначного решения задачи. В связи 
с этим получила распространение переопределённая (overdetermined) кра-
евая задача геодезии, постановка которой также рассмотрена в данной 
главе. 

В главе 2 выполнен анализ современных подходов к представлению 
гравитационного поля Земли, включая: коллокацию (статистический  
и функциональный подходы), вариационный метод регуляризации, метод 
оптимальных интегральных ядер, мультипольное представление потенци-
ала, метод линейных и сферических дискретных преобразований, метод 
разномасштабной аппроксимации геопотенциала и другие альтернативные 
методы.  

В начале главы даны сведения о гильбертовых пространствах c вос-
производящим ядром, которые необходимы для последующих теоретиче-
ских выводов. Для геодезических целей гильбертово пространство выби-
рается таким образом, чтобы оно непременно содержало в себе возмуща-
ющий потенциал Земли, поскольку любые геодезические измерения пред-
ставляют собой линейные или линеаризованные функционалы на потен-
циале. 

Представлен критический анализ традиционного моделирования ГПЗ  
в виде рядов по шаровым функциям. 

Чистая коллокация рассматривается как обобщенная задача интерпо-
ляции. 

Поскольку в реальности приходится иметь дело с измерениями, содер-
жащими неизбежные ошибки, то практический интерес представляет 
среднеквадратическая коллокация. 

В данной главе подробно рассмотрены вопросы решения задач колло-
кации в любом заданном гильбертовом пространстве с воспроизводящим 
ядром. Отметим, что как разномасштабное моделирование, так и средне-
квадратическая коллокация основаны на линейной аппроксимации с ис-
пользованием воспроизводящего ядра, которое связывает искомые пара-
метры с исходными данными. Приведены основные положения о точно-
сти решения задач коллокации, обсуждаются вопросы выбора воспроиз-
водящего ядра. В принципе, можно работать с любым воспроизводящим 
ядром, так как по форме ничего не меняется: и критерии оптимальности,  
и характеристики точности представляют собой нормы избранного про-
странства, а задача решается под условием минимизации этих норм. Од-
нако разные гильбертовы пространства придают разный смысл норме  
и, следовательно, разный смысл мере аппроксимации. Поэтому желатель-
но так выбрать гильбертово пространство, чтобы упомянутые критерии 
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совпадали (или почти совпадали) с вероятностно-статистическим поняти-
ем среднеквадратических ошибок. 

Подробно рассмотрен вариационный метод регуляризации, так как од-
ной из общих черт разномасштабного анализа и коллокации является тот 
факт, что те системы линейных алгебраических уравнений, к решению ко-
торых сводятся основные алгоритмы этих методов, по разным причинам 
оказываются плохо обусловленными. Это вызывает необходимость регу-
ляризации. 

Те же идеи регуляризации лежат в основе методов оптимизации ос-
новных операторов физической геодезии. Смысл оптимизации состоит  
в том, что при использовании операторов удаётся отфильтровывать неиз-
бежные помехи исходной функции непосредственно в процессе интегри-
рования. Если помехи отсутствуют, то выведенные обобщения совпадают 
с известными классическими вариантами. 

Обоснована возможность использования разномасштабного моделиро-
вания цифровой информации с помощью сферических радиальных базис-
ных функций для моделирования ГПЗ. Описаны виды сферических мас-
штабирующих функций и соответствующих вейвлетов. Поскольку хорошо 
известные интегралы Стокса, Неймана, Венинг-Мейнеса, модифициро-
ванный интеграл Венинг-Мейнеса, а также члены классических рядов 
Молоденского являются интегралами двумерной свёртки, то очень эффек-
тивно использовать для их вычисления быстрые дискретные преобразова-
ния, такие как Фурье, Хартли, z – преобразования и ряд других быстрых 
преобразований. В данной главе описаны основные свойства одномерных 
и двумерных, непрерывных и дискретных преобразований, быстрые алго-
ритмы.  

Здесь же рассмотрен вейвлет-анализ, под которым понимается специ-
альный вид спектрального анализа, позволяющий, в отличие от классиче-
ского спектрального анализа Фурье, получать распределение амплитуд 
(мощности) анализируемого сигнала и по частоте, и по времени (про-
странству). Описаны основные свойства вейвлет-анализа и некоторые 
геодезические приложения.  

Заключительный параграф данной главы посвящен искусственным 
нейронным сетям (ИНС). Рассмотрены общие сведения об ИНС и приме-
ры решения задач геодезии на базе ИНС. 

Глава 3 состоит из двух параграфов: в первом изложен технологиче-
ский процесс предварительной обработки и анализ данных чистых и сме-
шанных аномалий силы тяжести, полученных по результатам наземных 
измерений, во втором – полученных по результатам работы космических 
гравиметрических миссий CHAMP, GRACE, GRACE-FO, GOCE. 

В настоящее время большую роль в геодезии играют модели гравита-
ционного поля Земли, для построения которых используется разнородная 
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измерительная информация. Процесс ее подготовки является технологи-
чески сложным, поскольку требует учёта большого числа различных фак-
торов. Сравнительные исследования показывают, что различные комби-
нации процедур предварительной обработки приводят к существенно раз-
личающимся результатам моделирования ГПЗ на одних и тех же террито-
риях. То есть, уровень расхождений зависит от степени гравиметрической 
изученности региона, характера рельефа и типа измерительной информа-
ции. В связи с этим Международной ассоциацией геодезистов (IAG)  
в рамках Комиссии 2 «Гравитационное поле» (Commission 2. Gravity Field) 
создана рабочая группа, одной из задач которой является разработка  
и стандартизация эффективных методик предварительной обработки раз-
нородной информации и моделирования гравитационного поля Земли. Де-
ятельность по данному направлению координируется специализирован-
ными подкомиссиями IAG, в частности SC 2.2 «Geoid, Physical Height 
Systems and Vertical Datum Unification» и SC 2.4 «Gravity and Geoid»  
а также её региональными подразделениями (SC 2.4a–2.4e).  

В первой части данной главы подробно рассмотрены потенциальные 
проблемы обработки гравиметрической информации, а также технологи-
ческий процесс подготовки данных чистых и смешанных аномалий силы 
тяжести, полученных по результатам наземных гравиметрических, спут-
никовых и нивелирных измерений. Представлены исследования измене-
ний аномалии силы тяжести с изменением высоты во внешнем гравитаци-
онном поле Земли. Подробно представлен метод аналитического продол-
жение аномалий силы тяжести в нижнее полупространство, который пред-
ставляет собой сложную проблему. Принципиальная сложность заключа-
ется в неустойчивости (некорректности) решения этой задачи. Исследова-
ния подтвердили, что в процессе аналитического продолжения в верхнее 
полупространство влияние региональных аномалий растет, а влияния ло-
кальных ослабевает. 

Во второй части данной главы подробно рассмотрен технологический 
процесс подготовки данных чистых и смешанных аномалий силы тяжести, 
полученных по результатам работы космических гравиметрических мис-
сий CHAMP, GRACE, GRACE-FO и GOCE. Эти миссии имеют различные 
характеристики, различаются между собой как по составу исходной ин-
формации, так и по методикам их обработки и удовлетворяют разным ас-
пектам определения высокоточного гравитационного поля. В связи с этим 
представлен анализ чистых и смешанных аномалий силы тяжести, полу-
ченных по результатам работы космических гравиметрических миссий 
CHAMP, GRAСE, GRAСE-FO и GOCE. 

Особый интерес представляют модели геопотенциала, полученные на 
основе спутниковых наблюдений, охватывающих всю поверхность Земли. 
В отличие от наземных наблюдений, которые, как правило, немногочис-
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ленны и получены различными инструментальными средствами с разным 
уровнем качества и выборками, спутниковые измерения производятся  
с помощью одной и той же сенсорной платформы, глобальный уровень 
точности наблюдений более стабилен по сравнению с наземными наблю-
дениями. Это упрощает адекватное стохастическое моделирование  
на уровне наблюдений. В монографии представлены результаты вычисле-
ния чистых и смешанных аномалий силы тяжести по данным последних 
глобальных моделей геопотенциала: GOCO2025s и XGM2019e_2159. 

О структуре данной монографии: она состоит из введения и трех глав 
основного текста с нумерацией формул, рисунков и таблиц по каждой 
главе. Библиография использованных источников также представлена от-
дельно по каждой главе.  

Авторы выражают глубокую благодарность доктору технических наук 
В. Б. Непоклонову и доктору физико-математических наук В. Ю. Тимофе-
ееву, чьи рецензии способствовали улучшению содержания данной моно-
графии. 

К глубокому сожалению, авторы уже не могут лично выразить благо-
дарность безвременно ушедшему выдающемуся ученому, ректору 
СГУГиТ, профессору, доктору технических наук А. П. Карпику, творче-
ское влияние которого мотивировало авторов на проведение данных ис-
следований. 

Монография подготовлена в рамках Федерального проекта “Поддер-
жание, развитие и использование системы ГЛОНАСС” Государственной 
программы Российской Федерации “Космическая деятельность России” 
на 2021–2030 гг., регистрационный номер ЕГИСУ № 1210806000081-5.  



 

14 

 
 
 

1. АНАЛИЗ КЛАССИЧЕСКИХ МЕТОДОВ ПРЕДСТАВЛЕНИЯ  
ГРАВИТАЦИОННОГО ПОЛЯ ЗЕМЛИ 

1.1. Классическая постановка краевой задачи геодезии 

Основная задача геодезии, как известно, состоит в определении физи-
ческой поверхности S  Земли и ее внешнего потенциала W  силы тяжести 
в единой системе координат. Исходными данными служат геопотенциаль-
ные числа или приращения потенциала 0( ) ( )C P W P W= − , P S∈ , относи-
тельно некоторой начальной точки O ; значения величины силы тяжести 

( )g P , астрономические широта φ  и долгота λ  точки P . 
Поскольку астрономические координаты определяют направление от-

весной линии в точке P , то измерения ( ), φ, λg P  определяют собой, фак-
тически, вектор силы тяжести 

 

( ) ( )
cos φ cos λ
cos φsin λ

sin φ

g
g P g grad W P

g

 
 = = 
 
 

 .                 (1.1) 

 

Потенциал W  состоит из двух слагаемых – ньютoновского потенциала 
V  и потенциала центробежной силы Φ , возникающей за счёт вращения 
Земли с угловой скоростью ω : 

 

( ) ( )
2

2 2

Земля
, ,

2
W x y z V G dS x y

r
ω

= +Φ = + +∫∫∫
 ,             (1.2) 

 

где G – гравитационная постоянная; 
  – плотность распределения масс Земли; 
r  – расстояние между точкой вычисления и точкой интегрирования;  

, ,x y z  – геоцентрические прямоугольные координаты точки вычисле-
ния. 

Полагаем, что значения 0W W−  и g  известны во всех точках Земли. 
При рассмотрении основной задачи геодезии естественно опираться на 

традиционную идею численных методов: сначала для S  и W определить 
некоторые приближенные значения – главные части, соответственно, ∑   
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и U , а затем малые поправки к ним. Поэтому примем, что известен неко-
торый нормальный потенциал U , при котором квадратом возмущающего 
потенциала T W U= −  можно пренебречь в любой точке на поверхности 
S  и вне ее [1]. 

Практически нормальный потенциал U  задается с помощью уровенно-
го эллипсоида вращения [2, 3] 

 
2 2 2

2 2 1x y z
a b
+

+ = ,                                             (1.3) 

 

значение U  на поверхности которого постоянно и равно 0U ; 
 , ,a b a b>  – полуоси эллипсоида (малая полуось всегда предполагается 

параллельной оси вращения Земли). 
Нормальный потенциал определяется различными эквивалентными 

наборами из 7 параметров [2, 3]. Следующие параметры 
 

0 0 0 0, , , , , , ,Э Э Э ЭGM A C U x y z− ω                       (1.4) 
 

где ЭM  – масса эллипсоида; 
ЭA  – главный экваториальный момент инерции относительно оси x ; 
ЭC  – главный полярный момент инерции относительно оси z ; 
Эω  – угловая скорость вращения эллипсоида; 

0 0 0, ,x y z  – координаты центра эллипсоида, интересны с той точки зре-
ния, что они имеют реальный физический смысл.  

Для общего земного эллипсоида параметры (1.4) определяются следу-
ющими значениями: 

 

0, , , ,0,0,0,срGM A C W− ω                                    (1.5) 
 

здесь M – масса Земли; 
( )/2, , ,срA А B A B C= +  – главные моменты инерции Земли. 

Теперь определим поверхность ∑ , приближенно отражающую иско-
мую поверхность S . Пусть P  – точка физической поверхности Земли S  с 
известными значениями ( )W P  и ( )g P . Поставим ей в соответствие неко-
торую другую точку Q  так, чтобы [2] 

 

0 0( ) ( )U U Q W W P− = − ,                                   (1.6) 
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( )
( )

( )
( )

,
gradU Q gradW P

Q g P
=

γ
                                   (1.7) 

 

здесь gradUγ =  – нормальная сила тяжести, поэтому левая часть уравне-
ния (1.7) есть единичный вектор нормали к уровенной поверхности нор-
мального поля. Соотношения (1.6), (1.7) полностью определяют точку Q   
в системе координат нормального поля. 

Множество всех таких точек Q  образует некоторую поверхность ∑ , 
называемую теллуроидом. 

Дальнейшему определению подлежат возмущающий потенциал 
0 0( )T W U U W= − + −  и векторное поле векторов QP



 на поверхности тел-
луроида. Искомые T  и QP



 суть малые величины, квадратами и произве-
дениями которых можно пренебречь в линейной постановке задачи. 

Будем пользоваться прямоугольной системой координат такой, что её 
ось z  задаётся малой осью 2b  эллипсоида вращения, а начало координат 
O  находится в центре эллипсоида. Если система при этом является гео-
центрической, то есть её начало O  совпадает с центром масс Земли, а ось 
z  – с осью вращения Земли, то это позволяет считать потенциал Φ  цен-
тробежной силы одинаковым для реального W  и нормального U  потенци-
алов силы тяжести. Это, в свою очередь, означает, что возмущающий по-
тенциал T W U= −  есть гармоническая функция, регулярная на беско-
нечности. Таким образом, задача сводится к решению уравнения Лапласа 

0T∆ =  вне Земли. 
Необходимо сформулировать краевое условие этой задачи. Если опи-

раться на линеаризацию условий (1.6), (1.7) с последующим исключением 
QP


, полагая при этом, для простоты, 0 0W U= , получим следующий вид [4]: 
 

 ( ) ( )1 1П ПT Tggrad U grad T T grad U grad U− −∆
− =

γ
,             (1.8) 

 

здесь 
 

2 2 2

2

2 2 2

2

2 2 2

2

П

U U U
x y x zx

U U U
x y y zy

U U U
x z y z z

 ∂ ∂ ∂
 

∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂ =
∂ ∂ ∂ ∂ ∂

 
∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ 

                                       (1.9) 
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– это квадратная матрица вторых производных нормального потенциала 
U  в точке Q ; 

P Qg g∆ = − γ  – смешанная аномалия силы тяжести. 

Соотношение (1.8) представляет собой точную форму краевого усло-
вия на поверхности теллуроида ∑  для искомого возмущающего потенци-
ала  в линейной постановке задачи Молоденского. Оно справедливо при 
любом нормальном поле U , допускающем линеаризацию. Но оно не даёт 
в явном виде направление дифференцирования T  на краевой поверхно-
сти. В этом смысле более удобной является локальная прямоугольная си-
стема координат с центром в точке Q∈∑  [5]. Ось z  этой системы напра-
вим вверх по касательной к векторной линии нормального поля, ось x  –  
в плоскости горизонта нормального поля по касательной к меридиану (на 
север), а ось y  – на восток. В этой системе координат условие (1.8) при-
мет вид 

 

T T g
H HΣ Σ

∂ ∂γ
− = −∆

∂ γ ∂
.                                     (1.10) 

 

В общем случае 0 0W U≠ , поэтому 
 

 ( )0 0
1T T g W U

H H HΣ Σ Σ

∂ ∂γ ∂γ
− = −∆ − −

∂ γ ∂ γ ∂
.                     (1.11) 

 

Это краевое условие на теллуроиде для возмущающего потенциала со-
ответствует нормальному полю, создаваемому уровенным эллипсоидом. 
Оно записано в топоцентрической горизонтальной системе координат это-
го поля. Производная /T H∂ ∂  вычисляется по направлению (вверх) век-
торной линии нормального поля. Оно практически совпадает с направле-
нием отвесной линии и с направлением нормали к уровенному эллипсои-
ду. Однако, это направление существенно отличается от направления 
нормали к краевой поверхности. Поэтому решение дифференциального 
уравнения Лапласа с краевым условием (1.11) существенно отличается от 
классической третьей краевой задачи теории потенциала и представляет 
собой краевую задачу с косой производной, известную как краевая задача 
Молоденского. Предполагается, что теллуроид ∑  – замкнутая непрерыв-
но дифференцируемая по координатам поверхность, имеющая звёздную 
форму, т. е. всякий луч, исходящий из начала координат, пересекает ∑  
только в одной точке. 

T
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Краевое условие (1.11) можно упростить за счёт того, что в реальных 
условиях производная / H∂γ ∂  практически постоянна [6]: 

 

0,3086
H
∂γ

≈ −
∂

 мГал/м.                                  (1.12) 

 

Следовательно, коэффициент 1
H
∂γ

−
γ ∂

 в (1.11), по существу, зависит 

лишь от удаления от уровенного эллипсоида, задающего нормальное поле. 
А это означает, что векторные линии нормального поля мало отличаются 
от лучей, исходящих из одной точки, и потому уровенную поверхность  
в указанном смысле можно считать сферой, а дифференцирование γ  по 
H  практически равносильно дифференцированию γ  по радиусу-вектору 
ρ  точки Q∈∑ . Радиус этой сферы 6371cpR ≈  км; он получен из условия 
равенства объема сферы объему эллипсоида [7]. 

С учётом описанных упрощений условие (1.11) приобретает вид 
 

( )0 0
2 2

Q

T T g W U
Σ Σ

∂
+ = −∆ + −

∂ρ ρ ρ
,                         (1.13) 

 
или, в эквивалентной форме, 

 

( ) ( )0 02 2QgradT T g W UΣ Σρ + = −ρ ∆ + −
 .                     (1.14) 

 
Краевые условия (1.13), (1.14) соответствуют нормальному полю, со-

здаваемому уровенным эллипсоидом, но записаны в упрощенной системе 
координат сферического нормального поля. 

Для дальнейшего будем использовать операторную форму краевых 
условий [4] 

 

i iM T fΣ = ,                                             (1.15) 
 

где iM  – оператор левой части, называемый оператором Молоденского;  

 if  – известная правая часть; 

 1,2,3,4i =  обозначают краевые условия (1.8), (1.11), (1.13) и (1.14), 
соответственно. Областью определения оператора iM  является множество 
X  функций, гармонических во внешнем относительно теллуроида про-

странстве: 
 

:i iM T fΣ 

. 
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1.2. Условия существования и единственности решения  
краевой задачи Молоденского 

Для того, чтобы сформулировать условия существования и единствен-
ности решения краевой задачи Молоденского, нам понадобятся некоторые 
сведения из функционального анализа [8, 9–11]. 

Пусть требуется решить уравнение  
 

, ,Ax y x X y Y= ∈ ∈ ,                                  (1.16) 
 

где A  – замкнутый линейный оператор (например, оператор Молоденско-
го iM  из (1.15)); 

y  – заданная функция (например, функция if  из (1.15)); 
x  – искомое решение (в нашем случае, возмущающий потенциал T ); 

,X Y  – некоторые гильбертовы пространства (в нашей задаче X  за-
полняют функции, гармонические в Θ  – внешности ∑ , a Y  – множество 
возможных исходных данных). 

Для существования и единственности решения задачи (1.16) необхо-
димо и достаточно, чтобы оператор A  был обратимым, причем область 
определения обратного оператора 1A−  должна совпадать со всем про-
странством Y . 

В общем случае решение уравнения (1.16) обычно существует лишь 
при условии, что правая часть удовлетворяет некоторым дополнительным 
ограничениям. Для определения количества этих ограничений и их вида 
введем в рассмотрение соответствующее (1.16) однородное (приведенное) 
уравнение 

 

0Ax = .                                               (1.17) 
 

Решения этого уравнения образует подпространство, называемое яд-
ром оператора и обозначаемое KerA . Обозначим количество линейно не-
зависимых решений уравнения (1.17) через 1( )Aβ . Ясно, что ,KerA X⊂   

и 1( )Aβ  есть размерность ядра. Пусть далее A∗ – оператор Y X
, со-

пряженный к А  в том смысле, что 
 

( ) ( )*, , , ,Y X
y Ax x A y x X y Y= ∀ ∈ ∀ ∈ , 

 

здесь (.,.)  – скалярное произведение в соответствующем пространстве.  
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Обозначим через 2 ( )Aβ  размерность KerA∗ , то есть количество ли-
нейно независимых решений сопряжённого однородного уравнения 

 

0A z∗ = .                                                (1.18) 
 

Очевидно, KerA Y∗ ∈ . 
Имеет место следующая теорема. 
Теорема 1. Для того чтобы уравнение (1.16) имело хотя бы одно ре-

шение, необходимо, чтобы свободный член был ортогонален ко всем ре-
шениям уравнения (1.18): 

 
* *y KerA y Ker A⊥⊥ ⇔ ∈ ,                                (1.19) 

 

где *Ker A⊥  есть ортогональное дополнение ядра сопряжённого опера-
тора *A  до всего пространства :Y  

 
* *Y KerA Ker A⊥= ⊕ . 

 

Если хотя бы одно из чисел 1( )Aβ  и 2 ( )Aβ  конечно, то их разность 
называется индексом оператора A : 

 

( ) ( )1 2β βIndA A A= − . 
 

Известно, что условия (1.19) в общем случае лишь необходимы для 
разрешимости уравнения (1.16). Если эти же условия и достаточны, то 
оператор A  называется нормально разрешимым. 

Краевая задача с косой производной в том случае, когда направление 
дифференцирования нигде не касается краевой поверхности, нормально 
разрешима и ее индекс равен нулю. Условием разрешимости для краевой 
задачи Молоденского служит неравенство [11] 

 

( )cos , 0H n > ,                                          (1.20) 
 

где H  – направление дифференцирования; 
 n  – направление внешней нормали к регулярной поверхности тел-

луроида. 
Итак, для нормально разрешимых задач с нулевым индексом справед-

лива следующая теорема [11]. 
Теорема 2. Для разрешимости уравнения (1.16) необходимо и доста-

точно, чтобы свободный член отвечал 1( )Aβ  условиям ортогональности 
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в метрике пространства Y . Вид этих условий определяется требовани-
ями (1.19). Общее решение имеет вид 

 

 
( )1β

0
1

A

i i
i

x x c x
=

= + ∑ ,                                        (1.21) 

 

где 0x  – частное решение неоднородного уравнения (1.16); 
 c  – произвольные постоянные; 
 ix  – линейно независимые решения однородного уравнения (1.18), т. е. 

базисные элементы KerA . 
Решение будет единственным, если существует способ однозначного 

определения участвующих там констант. 
Можно показать, что для операторных уравнений (1.16) на исходные 

измерения if  задачи необходимо наложить не менее трёх ограничитель-
ных условий типа (1.19). Это связано с тем, что по имеющейся информа-
ции невозможно определить положение центра эллипсоида в геоцентри-
ческой системе координат [6, 12]. Хёрмандер доказал, что их ровно три 
даже в общем случае линейной задачи Молоденского [7]. Для краевого 
условия, записанного в системе координат сферического нормального по-
ля (1.13), (1.14), трудами М. С. Молоденского, В. Ф. Еремеева  
и М. И. Юркиной [12, 13] получено не только число необходимых и до-
статочных ограничений, но и вид этих ограничений. 

Лемма 1. Собственными функциями оператора 4M  в (1.16) служат 
шаровые функции вида 

 

( ) 1
1 (θ λ),

ρn nnT P S+= ,
 

 

где (θ λ)nS ,  – сферическая функция n-ой степени; 
 (ρ θ λ), ,  – сферические координаты текущей точки P∈Θ . Других 

собственных функций нет. Соответствующие собственные числа 
1 ,n nλ = −  0,1,2,...n =  [14]. 

Следствие 1. Задача с однородным краевым условием 4 0,M T ∑ =

имеет единственное решение 
 

( ) ( )1
1 2

θ,λ
ρ

S
T P =

, 
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где ( )1 θ,λS  – сферическая функция 1-ой степени. Поэтому если исходная 

неоднородная задача 4 4 ,M T f∑ =  имеет частное решение 0T , то, в соот-

ветствии с (1.21), общее решение запишется [12]: 
 

( ) ( )1
0 0 02

θ,λ
ρ

S
T T U W= + + −

.                                (1.22) 
 

Три коэффициента сферической функции первой степени определяют-
ся положением центра O  используемого эллипсоида в геоцентрической 
системе координат. 

Выясним условия существования частного решения 0T  неоднородной 
задачи. 

Пусть 
 

4 ,F M T T X= ∈ .                                           (1.23) 
 

Можно показать, что функция F  является гармонической в Θ  и регу-
лярной на бесконечности. Из этого следует, что она также является реше-
нием задачи Дирихле [4] 

 

 0F∆ =  в 4, F fΣΘ = ,                                  (1.24) 
 

где в соответствии с (1.14), 4 0 0ρ 2( )f g U W= − ∆ + − . 
Имеет место следующая теорема [12, 14–17]. 
Теорема 3. Для существования решения задачи Молоденского с крае-

вым условием (1.14) необходимо и достаточно, чтобы функция F , опре-
деляемая выражением (1.23), не содержала шаровой функции первой сте-
пени. 

Теорема 3 дает условия разрешимости задачи Молоденского с краевым 
условием (1.13), (1.14) в виде ограничений на функцию F . Следующая 
теорема даёт ответ на вопрос о том, каким требованиям должна удовле-
творять полученная из измерений аномалия силы тяжести g∆ , чтобы ука-
занные ограничения на F  выполнялись. 

Теорема 4. Пусть iS  – значение какой-нибудь шаровой функции пер-
вой степени на поверхности теллуроида, т. е. 1(ρ )iS S ∑= , a eS  – решение 
внешней задачи Дирихле, соответствующее граничным значениям iS . Для 
существования решения задачи Молоденского с краевым условием (1.14) 
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необходимо и достаточно, чтобы измеренные значения смешанных ано-
малий силы тяжести g∆  удовлетворяли следующему условию 

 

4 0i eS S f d
n nΣ

∂ ∂ − Σ = ∂ ∂ 
∫

,                               (1.25) 
 

где iS
n

∂
∂

 и eS
n

∂
∂

 – соответственно, внутренняя и внешняя производные по 

нормали к теллуроиду. 
Если положить 0 0U W= , то его можно переписать в виде [12] 

 

 
ρ 0e iS S gd

n nΣ

∂ ∂ − ∆ Σ = ∂ ∂ 
∫

.                               (1.26) 
 

Поскольку шаровая функция 1ρS  есть линейная комбинация трех ли-
нейно независимых функций, то условие (1.25) представляет собой, по 
существу, три линейно независимые условия, которым обязаны удовле-
творять исходные измерения. Эти ограничения на g∆  выполняются авто-
матически лишь в предположении, что измерения проделаны совершенно 
безошибочно. 

Итак, три условия (1.25), (1.26) есть конкретный вид ограничений 
(1.19) на исходные данные в задаче Молоденского с краевым условием 
(1.14) при решении краевой задачи в сферической аппроксимации. Однако 
они слишком сложны для практики. Так как референц-эллипсоид рассмат-
ривается как сфера, то 

 

 ρ 1ср ср
ср

HR H R
R

 
= + = +  

 

.                               (1.27) 

 

Под решением задачи Молоденского в плоской аппроксимации будем 
понимать решение с относительной ошибкой порядка срH R  где H  – 

нормальная высота, срR  – средний радиус Земли. При этом функции, от-

личающиеся друг от друга менее относительной разности порядка срH R , 

считаются тождественными. 
Следующая теорема дает упрощенный вид условий, соответствующий 

плоской аппроксимации. 
Теорема 5. Для существования решения задачи Молоденского с крае-

вым условием (1.14) в плоской аппроксимации необходимо и достаточно, 
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чтобы измеренные значения смешанных аномалий силы тяжести g∆  удо-
влетворяли следующему условию [18] 

 

 
1 0

cos
R

R
H gg S d

nΩ

 ∂∆
∆ − Ω = β ∂ 

∫ ,                         (1.28) 

 

где β  – угол наклона поверхности теллуроида в текущей точке; 

n
∂
∂

 – производная по нормали к теллуроиду; 

RΩ  – геосфера радиуса R . 
Итак, если краевое условие представлено в форме (1.13), (1.14), то для 

существования решения на исходные аномалии g∆  необходимо и доста-
точно наложить ровно три условия (1.25), (1.26). Общее решение в этом 
случае имеет вид (1.22). Для единственности решения три коэффициента 
сферической функции первой степени и константа 0 0U W=  должны опре-
деляться по дополнительным данным. 

1.3. О корректности краевой задачи Молоденского 

Задача, состоящая в решении уравнения (1.16), называется корректной 
по Адамару в паре метрических пространств , ,X Y  если имеют место 
условия [8–11]: 

1) для любых исходных данных y Y∈  существует решение x X∈ ; 
2) это решение единственное; 
3) это решение устойчивое в том смысле, что достаточно малому  

(в метрике Y ) изменению y соответствует сколь угодно малое в (метрике 
X ) изменение x . 

Исходные данные задачи приобретаются, как правило, в процессе из-
мерений и, следовательно, содержат неизбежные погрешности разного 
рода. Поэтому важно, чтобы задача имела вполне определенное решение 
при, вообще говоря, любых разумных (скажем, непрерывных) исходных 
данных. В этом и состоит суть первых двух условий. Предположим, что 
они выполнены, и некоторой исходной информации y , точность которой 
характеризуется критерием yd , соответствует решение x , точность кото-

рого характеризуется критерием xd  (в соответствии с метриками про-
странств X  и Y ). 
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Обычно предполагается, что повышение точности исходных измере-
ний повышает и точность решения, то есть 

 

если 0, то 0y xd d→ → .                                 (1.29) 
 

Именно это и обеспечивает третье условие корректности. Однако  
в общем случае предположение (1.29) рискованно: в широком классе 
практически встречающихся задач из близости функций 1y  и 2y  не сле-
дует безоговорочная близость соответствующих решений 1x  и 2x . 

Теорема 6. Для того, чтобы линейная задача (1.16) была корректной  
в паре банаховых пространств , ,X Y  необходимо и достаточно, чтобы: 

1) существовал обратный оператор 1A− , действующий из Y  в X , 
причем область его определения совпадает с Y; 

2) оператор  1A−  ограничен, то есть существует такая константа 
0α > , что 

 

 y YX
x yα ,                                       (1.30)  

 

где 1
yx A y−= , а нижний индекс указывает пространство, в метрике 

которого вычисляется норма. 
Доказательство можно найти, например, в [10]. 
Теорема 6 означает, что из существования и единственности решения 

уравнения (1.16) с линейным ограниченным оператором следует непре-
рывная зависимость решения 1

yx A y−=  от правой части y . 

Отметим, что корректность или некорректность задачи зависит от того, 
в каком пространстве определяется решение и какому пространству при-
надлежат ожидаемые исходные данные. Одна и та же задача может ока-
заться корректной в одной паре пространств ,X Y  и некорректной в дру-
гой. 

Для успешного применения численных методов формальное выполне-
ние условий корректности может оказаться недостаточным [4]. Надо, что-
бы задача была хорошо обусловлена, то есть малые изменения исходных 
данных приводили бы к достаточно малому изменению конечных резуль-
татов. Таким образом, важно не только существование константы, обеспе-
чивающей неравенство (1.30), но важна и величина этой константы. Чем 
меньшее число α  обеспечивает (1.30), тем более благоприятное соотно-
шение скоростей сходимости последовательностей (1.29) гарантировано. 
При больших α  малые изменения исходных данных или эквивалентные 
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этим изменениям малые погрешности численного метода могут сильно 
исказить решение. В подобных ситуациях говорят, что задача плохо обу-
словлена, или слабо устойчива. Следовательно, желательно, оценить ни 
вообще какую-нибудь константу, обеспечивающую неравенство (1.30), а 
нижнюю грань всевозможных таких констант, то есть, желательно, полу-
чить то, что называется нормой 1A−  обратного оператора, разрешающего 

рассматриваемую задачу. Однако практически удается лишь оценить нор-
му сверху, так как вычисление норм конкретных операторов часто затруд-
нительно. 

В параграфе 1.2. рассмотрен вопрос об обратимости и нормальной раз-
решимости оператора Молоденского, имеющий отношение к первому 
требованию теоремы 6. Для ответа на вопрос о том, выполняется ли вто-
рое требование теоремы 6 и третье условие корректности, полезно следу-
ющее утверждение [8]. 

Теорема 7. Пусть А – линейный непрерывный взаимно однозначный 
оператор с областью определения ( )D A X=  и множеством значений 

( )E A Y⊆ , где ,X Y  – банаховы пространства. Для ограниченности об-
ратного оператора необходима и достаточна замкнутость множества 
значений оператора, т. е. 1 ( ) ( )A E A E A− < ∞⇔ = . 

Черта сверху означает замыкание множества. 
Заметим, что множество значений нормально разрешимого оператора 

замкнуто и определяется выражением [8] 
 

( )E A Ker A⊥ ∗= . 
 

Следовательно, оператор 1A− , действующий на множестве допусти-
мых исходных данных Y Ker A⊥ ⊥ ∗= , ограничен. 

Из проведенных рассуждений и результатов параграфа 1.2. можно сде-
лать вывод об устойчивости решения линейной задачи Молоденского (от-
носительно возмущений правой части краевого условия) в паре про-
странств, обеспечивающих непрерывность и нормальную разрешимость 
оператора левой части краевого условия. Рассмотрим этот вопрос более 
подробно. 

Поскольку аномалия силы тяжести g∆ получается из измерений, то  
в качестве правой части f  в краевом условии следует ожидать произволь-
ную непрерывную (или даже разрывную) функцию. Пусть ( )C ∑  – бана-
хово пространство функций, непрерывных на ∑  с чебышевской нормой

sup ( ) ,f f P P= ∈∑ ; Г( )Θ  – подпространство пространства ( )С Θ , об-
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разованное функциями, гармоническими в Θ  и непрерывными в Θ : 
Θ = Θ∪∑ . Будем, для определенности, полагать f Y∈ , где ( )Y C= ∑ . 
Множество X , которому принадлежит искомый потенциал T , есть мно-
жество всех функций, гармонических, по крайней мере, в  и регулярных 
на бесконечности. В силу последнего практически можно рассматривать 

 как конечную область, граница которой не хуже кусочно гладкой. По-
этому будем полагать X  банаховым пространством Г( ).Θ  

Таким образом, решение краевой задачи Молоденского рассматривает-
ся в паре пространств Г( ),X = Θ  ( )Y C= ∑ . 

Начнем с краевого условия в (квази)геоцентрической системе коорди-
нат (1.8). Согласно анализу, проведенному в параграфе 1.2., эта задача яв-
ляется некорректной, так как она не всегда разрешима (исходные данные 
обязаны удовлетворять некоторым условиям), а решение, если оно суще-
ствует, не единственно. Аналогичная ситуация имеет место и для краевой 
задачи (1.11). Некорректной является и задача с краевым условием (1.13), 
(1.14), записанным в системе координат сферического нормального поля. 
Причины те же: решение существует лишь при выполнении трех ограни-
чений на исходные измерения (теорема 3) и не является единственным, а 
содержит произвольные постоянные. Отличие от случая, изложенного 
выше, состоит в том, что число ограничений и вид их точно известны. По-
этому можем сузить множество Y  до подмножества ( )Y C⊥ ⊥= ∑ , к кото-
рому будем относить лишь те элементы пространства ( )C ∑ , которые удо-
влетворяют условиям разрешимости задачи (1.25), (1.26). В паре про-
странств Г( )Θ , ( )C⊥ ∑ , первое условие корректности выполняется. Вто-
рое условие корректности также можно считать выполненным, поскольку, 
как уже говорилось выше, в общем решении (1.22) координаты начала ис-
пользуемой системы координат в геоцентрической системе и константа 

0 0U W−  определяются по дополнительным измерениям [6] и, во всяком 
случае, являются фиксированными постоянными [13]. 

Это означает существование оператора, разрешающего задачу в сфе-
рическом отсчетном поле. Этот обратный оператор действует из 

( )Y C⊥ ⊥= ∑ в Г( ),X = Θ  причем область его определения совпадает с Y ⊥ . 
Таким образом, первое требование теоремы 5.1 выполнено. Перейдём те-
перь ко второму требованию этой теоремы, связанному с третьим услови-
ем корректности. 

Теорема 8. Справедливо неравенство, показывающее ограниченность 
оператора, разрешающего задачу Молоденского (1.14) в паре про-
странств  Г( ), ( )С⊥Θ ∑ : 

Θ

Θ
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( ) ( )Г

1
2 CT f ⊥Θ Σ .                                    (1.31) 

Таким образом, задача в сферическом отcчетном поле корректна в 
уточненной паре пространств Г( ), ( )С⊥Θ ∑ , но некорректна в исходной 
паре пространств Г( ), ( )СΘ ∑ . 

Однако, условия (1.25), (1.26), выделяющие множество Y ⊥  из Y , 
слишком сложны для того, чтобы их можно было эффективно проверить 
на практике. К тому же постановка краевой задачи предполагает наличие 
непрерывных исходных данных на всей поверхности планеты. В действи-
тельности же имеются данные, причем неравномерные, лишь в дискрет-
ных точках. Таким образом, в действительности речь идет, по существу, о 
восстановлении решения задачи (возмущающего потенциала) по некото-
рым функционалам от решения. 

Перейдём к рассмотрению решения линейной краевой задачи Моло-
денского. При этом можно выделить три основных классических подхода: 

– метод, использующий аппарат рядов по сферическим (шаровым) или 
эллипсоидальным функциям;  

– метод, использующий построение функций Грина;  
– метод, опирающийся на составление интегральных уравнений. 

1.4. Решение краевых задач геодезии с использованием  
рядов по шаровым функциям 

Поверхность Земли имеет очень сложную структуру, и часто при ре-
шении краевых задач физической геодезии для упрощения используют 
сферу в качестве краевой поверхности. При этом, для описания внешнего 
потенциала Земли удобно применять аппарат рядов Лапласа по сфериче-
ским функциям, поскольку эти функции образуют полный ортогональный 
базис на сфере. 

Как известно, широкий класс функций (θ,λ)f , заданных на поверхно-
сти единичной сферы σ , допускает представление в виде разложения  
в ряд по сферическим функциям [19] 

 

( ) ( ) ( )[ ]
0 0 0

θ,λ θ,λ cosθ cos λ sin λ
n

n nk nk nk
n n k

f Y P c k s k
∞ ∞

= = =
= = + =∑ ∑ ∑

 
 

( )
2

0 0
φ θ,λ

n
nl nl

n l
a

∞

= =
= ∑ ∑ ,                                    (1.32) 
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где nkP  – полиномы ( 0)k =  или присоединённые функции ( 0)k > Ле-
жандра степени n  и порядка k . 

Коэффициенты nkc  и nks  определяются формулами 
 

( )
2

,φ

φ
nl

nl
nl

f
a = =

 
 

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

2

0 0

2

0 0

!2 1 θ,λ cosθ cos λ sin θ λ θ,
2π δ !

,
!2 1 θ,λ cosθ sin λ sin θ λ θ,

2π δ !
,

nk nk
k

nk nk
k

n knc f P k d d
n k

l n k l
n kns f P k d d
n k

l n k n l

π π

π π

 −+
= ⋅ ⋅ ⋅ +

 == 
−+ = ⋅ ⋅ +


> = −

∫ ∫

∫ ∫

 .      (1.33) 

 

В геодезической практике удобнее пользоваться такой нормировкой, 
при которой среднее интегральное по единичной сфере значение квадрата 
основной сферической функции равно единице, то есть 

 

( )21 φ 1
4 nl P d

Ω
⋅ Ω =

π ∫
. 

 

Соответствующие полностью нормированные основные сферические 
функции имеют вид 

 

( ) ( ) ( )
( ) ( )2 2 1 !

φ φ
δ !nl nl

k

n n k
P P

n k
⋅ + −

= ⋅ ⋅
+

,                        (1.34) 

 

где δ 1k =  при 0k > , 0δ 2=  при 0k = . 
Тогда в терминах полностью нормированных функций выражение 

(1.32) примет вид 
 

( ) ( ) ( )
2

0 0 0
θ,λ θ,λ φ θ,λ

n
n nl nl

n n l
f Y a

∞ ∞

= = =
= =∑ ∑ ∑ ,                  (1.35) 

 

где 
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( )
( )
( ) ( ) ( )

σ

!δ 1 θ,λ φ θ,λ
2 2 1 ! 4

k
nl nl nl

n k
a a f d

n n k
⋅

−
= = ⋅ ⋅ Ω =

+ + π ∫
 

 

( ) ( )
π 2π

0 0

1 θ,λ φ θ,λ sin θ λ θ
4 nlf d d= ⋅ ⋅ ⋅ ⋅
π ∫ ∫ .                    (1.36) 

Разложение внешнего потенциала притяжения Земли в ряд по шаро-
вым функциям выглядит следующим образом: 

 

( ) ( ) ( )
2 0

1 cos λ sin λ cosθ
ρ ρ

n n
nk nk nk

n k

aV P c k s k P
∞

= =

  µ  = + + 
   

∑ ∑ ,       (1.37) 

 

или 
 

( ) ( ) ( )
1

2 0
cos λ sin λ cosθ

ρ ρ

n n
nk nk nk

n k

a aV P c k s k P
a

+∞

= =

  µ  = + + 
   

∑ ∑ ,   (1.38) 

 

где а – большая полуось общеземного эллипсоида. 
 

Здесь 
 

 ,nk nk
nk nkn n

A Bc s
a M a M

= = ,                                 (1.39) 

 

с 
 

 ( )
( ) ( )

cos λ2 !
ρ cosθ

sin λδ !
nk n

nk
nk k

A kn k
P dm

B kn k Ω

′−  ′ ′=  ′+  
∫∫∫ ,                  (1.40) 

 

где Ω  – тело Земли; 
 ( )dm P d′ Ω=   – дифференциал массы, где P′  – текущая точка Ω ,  

а ( )P′  – плотность масс внутри Земли. 
На практике удобнее пользоваться полностью нормированными сфе-

рическими функциями (1.34). В таком случае соответствующие нормиро-
ванные коэффициенты связаны с nkc  и nks  соотношениями (1.36) 
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nk nkk
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Рассмотрим внешние краевые задачи теории потенциала, поскольку 
они тесно связаны с задачами физической геодезии. В том случае, когда 
краевая поверхность представляет собой сферу, их удобно решать с по-
мощью сферических функций. 

Начнём с первой краевой задачи – задачи Дирихле. 
На сфере радиуса R  с центром в начале координат O  задана функция 

( , )f θ λ . Требуется найти вне сферы такую функцию ( )V P  простран-
ственной точки ( , , )P ρ θ λ , которая удовлетворяет уравнению Лапласа 

 
2 2 2

2 2 2 0V V V
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
;                                   (1.42) 

 

совпадает с заданной функцией ( , )f θ λ  на поверхности сферы в том 
смысле, что 

 

 ( ) ( )lim ρ,θ,λ θ,λ
R

V f
ρ→

= ;                                  (1.43) 

 

является регулярной на бесконечности в том смысле, что 
 

 ( )lim ρ,θ,λ 0V
→+∞

=
ρ

.                                    (1.44) 

 

 Решением внешней задачи Дирихле является ряд 
 

 ( ) ( )
1

1
0

ρ,θ,λ θ,λ
ρ

n

nn
n

RV Y
+∞

+
=

= ∑  при ρ R> .                   (1.45) 

 

В замкнутом виде решение внешней задачи Дирихле может быть вы-
ражено интегралом Пуассона 

 

 ( ) ( )2 2

3
Ω

θ,λρρ,θ,λ
4π

fRV d
R r

−
= ⋅ ⋅ Ω∫ ,                             (1.46) 

 

где 2 2ρ 2 ρcos ψr R R= + − .  
 

Постановка второй краевой задачи – задачи Нейманна – отличается 
краевым условием для искомой функции ( )ρ,θ,λV V= . Она, по-
прежнему, должна удовлетворять уравнению Лапласа и обращаться в ноль 
на бесконечности. Но только теперь значения ( )θ,λf , заданной на сфере, 
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доставляют не значения самой искомой функции V  на сфере, а значения 
её производной V

n
∂
∂

 по направлению внешней нормали к Ω . 

Поскольку для сферы  V V
n

∂ ∂
=

∂ ∂ρ
, то краевое условие в задаче Нейманна 

выглядит так  
 

 ( )
ρ
lim θ,λ

ρR
V f

→

∂ =
∂

.                                       (1.47) 

 

Решением внешней задачи Неймана служит следующий ряд 
 

 ( ) ( )1

0

,
ρ,θ,λ

ρ 1

n
n

n

YRV R
n

+∞

=

θ λ 
= − ⋅  + 

∑  при ρ R> .              (1.48) 

 

В замкнутом виде решение внешней задачи Нейманна может быть вы-
ражено интегралом 

 

 ( ) ( ) ( )
1 2 1 ρcos ψρ,θ,λ θ,λ ln

4π ρ 1 cos ψ
R rV f d

r RΩ

 + −
= − − Ω − 

∫ .           (1.49)  

 

Заметим, что, если точка P  находится на самой сфере, то 
 

ψρ , 2 sin ,
2

R r R= = ⋅
 

 

и после преобразований формула (1.49) принимает вид 
 

 ( ) ( )1 ψ ψ,θ,λ θ,λ ln 1 cosec cosec
4π 2 2

V R f d
R Ω

  = + − Ω    
∫ .        (1.50) 

 

Если исходной информацией служит чистая аномалия силы тяжести, 
представляющая собой в сферической аппроксимации радиальную произ-
водную возмущающего потенциала 

 

( )θ,λ δ
ρ
Tf g∂

= = −
∂

, 

 

то получим формулу, известную под именем Хотина-Коха 
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( ) ψ ψ,θ,λ δ cosec ln 1 cosec
4π 2 2
RV R g d

Ω

  = − + Ω =    
∫

 
 

( )δ ψ
4π
R gK d

Ω
= Ω∫ ,                                    (1.51) 

здесь 
 

 ( ) ( )
0

2 1 ψ ψψ cos ψ cosec ln 1 cosec
1 2 2n

n

nK P
n

∞

=
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∑ ,        (1.52) 

 

– ядро Хотина-Коха, которое совпадает с соответствующей функцией 
Грина, см. (1.67). 

Перейдём к рассмотрению внешней третьей краевой задачи, которая 
исторически представляла наибольший интерес для физической геодезии. 

Итак, требуется найти гармоническую и регулярную на бесконечности 
функцию ( )V P . В качестве краевого условия на сфере Ω  задана непре-
рывная функция ( , )f θ λ , представляющая линейную комбинацию значе-
ний искомой функции ( , , )V V R= θ λ  и значений ее нормальной производ-
ной ( , , )V R∂ θ λ

∂ρ
 на сфере, то есть 

 

 ( ) ( ) ( )
ρ

ρ,θ,λ
θ,λ lim α ρ,θ,λ β

ρR

V
f V

→

∂ 
= ⋅ + ⋅ ∂ 

,                (1.53) 

 

где ,α β  – определенные константы. 
Если для всех целых n  соблюдается условие 

 

 ( )β 1 0R nα − + ≠ ,                                        (1.54) 
 

то решение внешней третьей краевой задачи может быть описано рядом 
шаровых функций вида 

 

 ( ) ( )
( )

1

0

θ,λ
ρ,θ,λ

ρ α β 1

n
n

n

YRV R
R n

+∞

=

 
= ⋅  − + 

∑ .                      (1.55) 

 

Для геодезии особый интерес представляют значения 2
R

α =  и 1β = . 

При этих значениях констант ( )α β 1 2 1 1R n n n− + = − − = −  и формула 
(1.55) принимает вид 
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 ( ) ( )1

0

θ,λ
ρ,θ,λ

ρ 1

n
n

n

YRV R
n

+∞

=

 
= ⋅  − 

∑ .                           (1.56) 

 

Поэтому найти однозначно сферическую функцию 1-ой степени не 
удается. Формула (1.56) при 1n =  может иметь какой-либо смысл лишь 
при условии 

 

( )1 , 0Y θ λ ≡ . 
 

При этом, разумеется, сферическая функция 1-ой степени может быть 
любой и, стало быть, решение задачи становится неоднозначным. 

Таким образом, если в (1.53) 2
R

α =  и 1β = , то третья внешняя краевая 

задача может быть решена лишь с точностью до произвольной сфериче-
ской функции первой степени 1( , )X θ λ . Для этого необходимо выполнение 
следующего дополнительного условия на заданную функцию ( , )f θ λ  

 

 ( , )cos 0f d
Ω

θ λ ψ Ω =∫ ,                                    (1.57) 

 

для всякой точки вычисления P . 
Само решение может быть записано так: 

 

 ( ) ( ) ( ) ( )
1 22

0 1
2

θ,λ
ρ,θ,λ θ,λ θ,λ

ρ ρ 1 ρ

n
n

n

YR R RV u R X
n

+∞

=

   
= − +   −   

∑ .       (1.58) 

 

здесь ( )1 θ,λX  – произвольная сферическая функция 1-ой степени, а коэф-
фициент перед ней написан из соображений единообразия структуры 
формулы. 

В замкнутом виде решение внешней третьей краевой задачи при 
2
R

α =  и 1β =  может быть выражено следующей интегральной форму-

лой, которую называют обобщенной формулой Стокса: 
 

 ( ) ( ) ( ) ( )
2 2

12
1ρ,θ,λ θ,λ ρ,ψ θ,λ

4 ρ ρ
R RV f S d X

Ω

 
= − − Ω+ π  

∫
,            (1.59) 

 

где 
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( ) ( )
1

2

1 2 1ρ,ψ cos ψ
1 ρ

n

n
n

n RS P
R n

+∞

=

 +
= ⋅ = −  

∑
 

 

 
2 2 2

2 1 3 5 3 ρ cos ψcos ψ cos ψ ln
ρ 2ρρ ρ ρ

r R R r R
r

+ − ⋅
= + − − − ⋅ .              (1.60) 

 

Если точка P  находится на сфере, то получим формулу Стокса 
 

 ( ) ( ) ( ) ( )
2

1,θ,λ θ,λ ρ,ψ 1 θ,λ
4
RV R f S d X

Ω
= − − Ω+  π ∫

,             (1.61) 

 

где функция Стокса 
 

( ) ( )
2

2 1 cos
1 n

n

nS P
n

∞

=

+
ψ = ψ =

−
∑

 
 

 2cosec 6sin 1 5cos 3cos ln sin sin
2 2 2 2
ψ ψ ψ ψ = − + − ψ − ψ ⋅ + 

 
.        (1.62)  

 

Как отмечалось выше, внешняя третья краевая задача исторически 
представляла наибольший интерес для физической геодезии. Связано это 
с тем, что наземная гравиметрическая информация обычно представлена  
в виде измеренных значений аномалии силы тяжести g∆ , являющихся 
линейной комбинацией значений искомого возмущающего потенциала T   
и значений его радиальной производной 

 

 2
ρ
Tg T

R
∂

∆ = − −
∂

.                                          (1.63) 

 

Но в последние десятилетия, благодаря спутниковым технологиям, 
стали доступны значения чистой аномалии силы тяжести gδ , представ-
ляющей собой радиальную производную T∂

−
∂ρ

 искомой функции T . По-

этому внешняя задача Неймана представляет сейчас не меньший интерес, 
нежели внешняя третья краевая задача, а со временем может и полностью 
вытеснить её. 

Аппарат рядов Лапласа по сферическим и шаровым функциям широко 
и успешно используется при решении задач физической геодезии. Это 
наиболее распространённая форма представления потенциала притяжения 
Земли. На данный момент существует, по меньшей мере, около 200 моде-
лей геопотенциала в виде коэффициентов разложения nkc  и nks  в ряд по 
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шаровым функциям, различающихся точностью своих коэффициентов  
и длиной разложения, то есть наибольшей степенью N  гармонических 
коэффициентов. Наибольшая степень N , по сути, определяет простран-
ственное разрешение на поверхности Земли (разрешающая способность 
модели).  

В параграфе 2.2. выполнен критический анализ традиционного пред-
ставления гравитационного потенциала Земли рядами по шаровым функ-
циям. Показано, что шаровые функции лучше всего подходят для описа-
ния низко- и среднечастотной частей гравитационного поля Земли. Одна-
ко, при описании высокочастотной составляющей лучше использовать 
другой базис, например, частотно и пространственно локализованные 
сферические радиальные базисные функции. 

1.5. Решение краевых задач для дифференциального  
уравнения Лапласа с помощью функций Грина 

Известно, что в теории физической геодезии фундаментальную роль 
играют формулы Грина, позволяющие при определённых условиях опре-
делять внешний потенциал материального тела только по значениям по-
тенциала и его первой производной на поверхности этого тела. При этом 
нет необходимости знать плотность распределения масс внутри тела –  
в этом суть. 

Пусть, например, S  обозначает поверхность материального тела,  
а V  – ньютоновский потенциал (потенциал сил притяжения) этого тела. 

Фундаментальная формула Грина имеет вид 
 

 ( )1 1 1
4 S

V V dS V P
r n n r
 ∂ ∂  − − =  π ∂ ∂   

∫∫ ,                     (1.64) 

 

где ( )V P  – функция точки ( , , )P x y z , гармоническая во внешнем про-
странстве и регулярная на бесконечности; 

 r  – расстояние между точкой вычисления P  и точкой интегрирова-
ния; 

n
∂
∂

 – производная по направлению нормали к S .  

Однако, непосредственное применение эта формула, как правило, не 
находит, поскольку в классе задач, возникающих в физической геодезии, 
на краевой поверхности обычно известны значения только одной какой-
нибудь функции: или только значения потенциала V  (первая краевая за-
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дача) или только значения производной по нормали V
n

∂
∂

 (вторая краевая 

задача) или значения линейной комбинации потенциала и производной 
(третья краевая задача). Поэтому формулу (1.64) приходится преобразо-
вывать так, чтобы можно было обойтись только одной из трёх перечис-
ленных функций. Для этого вводится некоторая вспомогательная функция 

( , )U P Q  координат двух точек P  и Q , гармоническая во всём внешнем 
пространстве и регулярная на бесконечности. Применим к гармоническим 
во всём внешнем пространстве функциям V  и u  ещё одну известную 
формулу Грина 

 

( )1
4 S

V UU V dS V P
n n

∂ ∂ − − = π ∂ ∂ ∫∫ , 

 

и почленно сложим это равенство с предыдущим равенством: 
 

( ) 1 1 1
4 S

VV P U V U dS
r n n r

 ∂ ∂   = − + − +    π ∂ ∂    
∫∫ . 

 

Обозначая 1 ( , )U Г P Q
r

 + = 
 

, приходим к равенству 

 

 ( ) 1
4 S

V ГV P Г V dS
n n

∂ ∂ = − − π ∂ ∂ 
∫∫ .                        (1.65) 

 

Функция ( , )Г P Q  называется функцией Грина. 
Пользуясь полученным соотношением, рассмотрим решение внешних 

краевых задач с помощью функций Грина.  Постановки задач можно 
найти в параграфе 1.4. 

Для решения внешней первой краевой задачи достаточно в правой ча-
сти формулы (1.65) исключить влияние нормальной производной. Для 

этого надо потребовать, чтобы на поверхности S  функция 1( , )U P Q
r

= − , 

то есть при Q S∈ , ( , ) 0SГ P Q = . Тогда первое слагаемое подынтеграль-

ной функции в (1.65) обращается в нуль, и мы получаем искомое решение 
внешней первой краевой задачи в виде: 

 

 ( ) ( )1 1
4 4S S

Г ГV P V dS f Q dS
n n

∂ ∂
= =

π ∂ π ∂∫∫ ∫∫ ,                    (1.66) 



 

38 

 

где ( )f Q  – известное значение потенциала на краевой поверхности S . 

Заметим, что функция U не может быть равной 1
r

−  и во всём внешнем 

пространстве, ибо в этом случае она потеряет гармоничность в точке P  
(при совпадении Q  с P  ), что противоречит условию. 

Но для того, чтобы воспользоваться интегральным преобразованием 
(1.66), надо, конечно, предварительно найти соответствующую функцию 
Грина Г  такую, что: 

– на краевой поверхности S  функция Грина равна нулю, т. е. 0SГ = ;  

– вне поверхности S  функция Грина гармонична всюду, за исключе-
нием точки P  (причиной нарушения гармоничности служит поведение 
слагаемого 1

r
− , а не U ); 

– функция Грина на бесконечности регулярна. 
Для решение внешней второй краевой задачи воспользуемся выведен-

ной выше формулой (1.65), в которой теперь необходимо исключить вто-
рое слагаемое подынтегральной функции, содержащее неизвестные зна-
чения искомой функции ( )V P  на краевой поверхности S , оставив только 
заданные на S  по условию второй краевой задачи значения нормальной 
производной V

n
∂
∂

. Для этого необходимо наложить очевидное условие  

на функцию Грина Г , а именно: 0
S

Г
n

∂  = ∂ 
. 

Второе и третье условия остаются теми же, что и для функции Грина, 
решающей внешнюю первую краевую задачу. При этом решение внешней 
второй краевой задачи имеет вид: 

 

 ( ) ( )1 1
4 4S S

VV P Г dS f Q ГdS
n

∂
= − = −

π ∂ π∫∫ ∫∫ .                  (1.67) 

 

Заметим, что внутренняя вторая краевая задача может быть решена 
только с точностью до произвольного постоянного слагаемого. Един-
ственность решения внешней задачи обеспечивается условием стремления 
искомой функции ( )V P  к нулю при удалении точки P  в бесконечность. 

Решение внешней смешанной краевой задачи будем искать, добавляя  
и одновременно вычитая из подынтегрального выражения формулы (1.65) 
величину ГVα , где α  – константа краевого условия: 
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( ) 1
4

1 .
4

S

S

V ГV P Г ГV ГV V dS
n n

V ГГ V V Г dS
n n

∂ ∂ = − + α −α − = π ∂ ∂ 

 ∂ ∂    = − + α − + α    π ∂ ∂    

∫∫

∫∫
 

 

Остается перечислить свойства функции Грина Г , решающей внеш-
нюю смешанную краевую задачу: 

– на краевой поверхности S  функция Грина Г  удовлетворяет усло-
вию 

 

0
S

Г Г
n

∂ + α = ∂ 
; 

 

– вне поверхности S  функция Грина Г  гармонична всюду, за исклю-
чением точки P , причем нарушение гармоничности в P  обусловлено по-
ведением слагаемого 1

r
, (а не U ); 

– функция Грина Г  на бесконечности регулярна. 
Само же решение третьей краевой задачи будет при этом иметь вид: 

 

 ( ) ( ) ( )1 1 ,
4 4S S

VV P Г V dS f Q Г P Q dS
n

∂ = − + α = − π ∂ π 
∫∫ ∫∫ .       (1.68) 

 

Таким образом, решения краевых задач могут быть сведены к отыска-
нию соответствующих функций Грина. Для определения функции Грина 
надо решать, по существу, ту же краевую задачу, но однородную, то есть 
искомая функция Грина на краевой поверхности должна обращаться  
в нуль-функцию. Поэтому функция Грина никак не зависит от результатов 
каких-либо геодезических измерений, а зависит только от вида краевой 
поверхности S  и решаемой краевой задачи. Окончательное решение крае-
вой задачи с помощью предварительно найденной функции Грина и вы-
полненных на краевой поверхности результатов измерений при необхо-
димости можно сравнительно просто корректировать в случае, например, 
уточнения измерений и т. п. Однако достаточно просто вычислить функ-
цию Грина для оператора Лапласа удаётся только для таких простых крае-
вых поверхностей, как плоскость и сфера. Результаты таких вычислений 
описаны в учебниках, см., например, [20]. 

Для геодезических целей полезно иметь функцию Грина для внешних 
краевых задач уравнения Лапласа на эллипсоиде. Хотя эллипсоид, каза-
лось бы, несущественно отличается от сферы, определить соответствую-
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щую функцию Грина оказывается очень непросто, см. например,  
[21–26]. Эффективное использование функций Грина для определения 
возмущающего потенциала и стоксовых постоянных Земли описано в ра-
боте [27]. В работе [28] функции Грина построены для так называемых 
градиентометрических краевых задач на средне орбитальной сфере. Из-
вестными считаются вторые производные геопотенциала, а искомым – по-
тенциал на этой сфере и вне её. Вторые производные разбиты на 3 незави-
симые группы, для каждой из которых решается своя краевая задача на 
упомянутой сфере. Эта работа может послужить подтверждением того, 
что метод функций Грина остаётся актуальным и находит применение при 
решении краевых задач геодезии в новых постановках и с новыми исход-
ными данными. 

1.6. Другие решения краевой задачи Молоденского 

1.6.1. Решение Молоденского методом  
интегральных уравнений 

Метод интегральных уравнений состоит в преобразовании краевого 
условия в эквивалентное интегральное уравнение. Возмущающий потен-
циал представляют в виде потенциала простого или двойного слоя, рас-
пределённого по краевой поверхности. Плотность слоя подлежит опреде-
лению. 

Задача состоит в решении уравнения Лапласа 
 

 0T∆ = ,                                              (1.69) 
 

для возмущающего потенциала T  во внешности Θ  теллуроида ∑   
с краевым условием (1.13) на теллуроиде ;∑  будем полагать 0 0U W=  для 
простоты: 

 

 2 .T T g∂
+ = −∆

∂ρ ρ
                                       (1.70) 

 

Молоденский [12] решил эту задачу, представив  T  как потенциал 
простого слоя 

 

 ( ) 1φ φ ,T P d r d
r

−

Σ Σ
= Σ = ∑∫∫ ∫∫                            (1.71) 

 

где P  – точка вычисления; 
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 ϕ  – плотность простого слоя, определённая на теллуроиде, 
 

 2 2ρ ρ 2ρ ρcos ψP Pr = + −                               (1.72) 
 

– расстояние между точкой P  и точкой интегрирования (дифференци-
алом поверхности dΣ ), где ψ  – угол между радиус-векторами этих двух 
точек. 

Тогда краевое условие (1.70), с учётом того, что производные потенци-
ала простого слоя терпят разрыв на поверхности этого слоя, запишется  
в виде интегрального уравнения 

 

 
1 122 φcosβ φ

ρ ρP P

r r d g
− −

Σ

 ∂
π − + Σ = ∆  ∂ 

∫∫ ,                      (1.73) 

 

где β – угол между радиус-вектором точки P и внешней нормалью к по-
верхности теллуроида в этой точке.  

Заметим, что дифференциал поверхности d ∑  может быть выражен 
через дифференциал единичной сферы dσ : 

 

 2ρ secβ σd dΣ = .                                      (1.74) 
 

С учётом соотношения (1.74) интегральное уравнение (1.73) можно за-
писать следующим образом 

 

 
2 2 2

3
ρ ρ3 ρ2πφcosβ secβ φ σ

2 ρ2
P

P
d g

r rσ

 −
− + ⋅ = ∆  

 
∫∫ .             (1.75) 

 

Это интегральное уравнение Молоденского. 
В плоской аппроксимации (см. (1.27)) (1.75) принимает более простой 

вид [7] 
 

 ( )2

3
32πφcosβ sec β φ σ
2

PR H HR d g
r rσ

 −
− + ⋅ = ∆ 

  
∫∫ .          (1.76) 

 

Выражение для расстояния также может быть упрощено: 
 

 ( )22 2
0 Pr r H H= + −  , где 0

ψ2 sin
2

r R= .                  (1.77) 
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Для решения основного интегрального уравнения используется искус-
ственный приём, называемый стягиванием по Молоденскому. Суть его 
состоит в том, что функции, участвующие в уравнении (1.75), разлагаются 
в ряд по параметру k . 

Ниже кратко описана эта процедура, подробности можно найти  
в [7, 12]. 

Для начала введём вспомогательную функцию 
 

 secχ = ϕ β .                                           (1.78) 
 

Тогда (1.76) примет вид 
 

 ( ) ( )212
3

32πχ 1 tg β χ
2

PR H HR d g
r r

−

σ

 −
+ − + σ = ∆ 

  
∫∫

.              (1.79) 

 

Заменим H  на ,kH  tgβ  на tgk β , где 0 1k  : 
 

 ( ) ( )2 2 2
3

32 1 tg
2

P

k k

k H H
k R d R d g

r rσ σ

−χ
πχ + β − σ − χ σ = ∆∫∫ ∫∫ ,        (1.80) 

 

Здесь 
 

  ( )
2

22 2 2 2 2
0 0

0
1 P

k P
H Hr r k H H r k

r

  − = + − = +  
   

.           (1.81) 

 

Далее функции 1

kr
, 

3
1

kr
, 2 2(1 tg )k+ β  разлагаются в ряд по степеням па-

раметра ,k  а функция χ  записывается в виде 
 

 
0

χ χn
n

n
k

∞

=
= ∑ .                                        (1.82) 

 

Подставляя эти ряды в уравнение (1.80), выполняя затем перемноже-
ние и приведение подобных членов, получим 

 

0
0

0

χ32πχ σ
2

d g
rσ

− − ∆ +∫∫
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21
1 02

0 0

χ3 η2πχ σ χ σ
2

k R d R d
r rσ σ

 
+ − − +  

 
∫∫ ∫∫

 
 

2 22
2 12

0 0

χ3 η2 χ χ
2

k R d R d
r rσ σ


+ π − σ − σ +


∫∫ ∫∫

 
 

)
2

2
0 0

0

3 η χ 2 χ tg
4
R d

rσ
+ σ − π β + =∫∫ 

,                       (1.83) 

 

где 
0

η PH H
r
−

= . 

Так как уравнение (1.83) обращается в тождество только, когда коэф-
фициенты при ,nk  0,1,2,...n = . равны нулю, то отсюда вытекает следую-
щая система интегральных уравнений: 

 

 
0σ

χ32πχ σ
2

n
n nR d G

r
− =∫∫ ,                              (1.84) 

где  
 

0 ,G g= ∆  
 

2
1 03

0
χ σ,PH HG R d

rσ

−
= ∫∫

 
 

 ( )22 2
2 1 0 03 3

0 0

3χ σ χ 2 χ tg β,
4

PP H HH H RG R d d
r rσ σ

−−
= − σ + π∫∫ ∫∫       (1.85) 

 

( )

( )

2
2

3 2 13 3
0 0

3
2 2

0 05
0

3χ σ χ σ
4

3 χ σ 2 χ tg β,
2

PP

P

H HH H RG R d d
r r

H H
R d

r

σ σ

σ

−−
= − −

−
− + π

∫∫ ∫∫

∫∫

 

……. 

При 0, 0n H= = , то есть теллуроид совпадает со сферой, и формулы 
(1.84) и (1.71) принимают, соответственно, вид 

 

 0
0

0

χ32πχ
2

R d g
rσ

− σ = ∆∫∫ ,                               (1.86) 
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и 
 

 2 20 0
0

0 0

φ χσ σT R d R d
r rσ σ

= =∫∫ ∫∫ .                           (1.87) 

 

Подставляя (1.87) в (1.86), получим 
 

 
0 0

1 3χ
2 2

g T
R

 = ∆ + π  
.                                 (1.88) 

 

Выразим здесь 0T  по формуле Стокса 
 

 ( )0 ψ 1
4 t
RT g S d

σ
= ∆ − σ  π ∫∫

,                              (1.89) 

 

где ( )ψtS  – известная функция Стокса 
 

( ) 21 6sin 1 5cos 3cos ln sin sin
2 2 2sin

2

tS ψ ψ ψ ψ = − + − ψ − ψ + ψ   
 
 

.       (1.90) 

 

Тогда 
 

 
( )

( )

0 2

2 0
0

0

1 3 ψ 1 σ ,
2 16

χ σ ψ 1 σ.
4

t

t

g g S d

RR d G S d
rσ σ

 χ = ∆ + ∆ −   π π 

= −  π

∫∫

∫∫ ∫∫

                 (1.91) 

 

Если полагать, что массы референц-эллипсоида и Земли совпадают, то 
функцию ( )ψ 1tS −  нужно заменить на ( )ψtS . Эти формулы верны  
и в общем случае 

 

 
( )

( )

2

2

0σ

1 3 ψ 1 σ,
2 16

σ ψ 1 σ.
4

n n n t

n
n t

G G S d

RR d G S d
l σ

χ = + −  π π

χ
= −  π

∫∫

∫∫ ∫∫

                     (1.92) 

 



 

45 

Теперь можно приступить к вычислению возмущающего потенциала  
с помощью выражения (1.71) и формул (1.74), (1.78), (1.82), а также раз-
ложения функции 1

kr
 в ряд по степеням k  

 

 2 1 2
0 1 2χT R r d T kT k T−

σ
= σ = + + +∫∫ 

.                (1.93) 

 

Используя формулы (1.92), получим 
 

( )0 0
σ

ψ 1 σ,
4 t
RT G S d= −  π ∫∫  

 

( )1 1
σ

ψ 1 σ,
4 t
RT G S d= −  π ∫∫  

 

( ) ( )22

2 2 03
σ σ 0

ψ 1 σ χ σ
4 2

P
t

H HR RT G S d d
r
−

= − −  π ∫∫ ∫∫ ,        (1.94) 

 

( )
2

3 3 13
σ σ 0

ψ 1 σ χ σ,
4 2

P
t

H HR RT G S d d
r
−

= − −  π ∫∫ ∫∫
 

 

………… 
Геометрический смысл использованного вспомогательного параметра 

k  состоит в сжатии топографии пропорционально этому параметру. Ре-
альной земной поверхности соответствует значение 1k = . С учётом этого, 
окончательно имеем 

 

 
0 1 2

0
n

n
T T T T T

∞

=
= + + + = ∑

.                               (1.95) 

 

Совокупность выражений (1.95), (1.85), (1.92) и (1.95) составляет ре-
шение задачи (1.69), (1.70), известное как ряды Молоденского [12]. 

1.6.2. Решение Бровара 

В. В. Бровар, в некотором смысле, обобщил идею Молоденского  
и представил T  как потенциал обобщенного поверхностного слоя [17]: 
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 λT Ed
Σ

= Σ∫∫ ,                                         (1.96) 

 

где E  – некоторая гармоническая функция, 
λ  – обобщенная поверхностная плотность, определённая на теллурои-

де Σ ; 
Подстановка (1.96) в (1.70) даёт следующее соотношение: 

 

 2 2λ
ρ ρ ρ ρP

P P P P

T Eg T E d
Σ

 ∂ ∂
∆ = − − = − − Σ ∂ ∂ 

∫∫ .                (1.97) 

 

Функцию E , входящую в ядро интеграла, 
 

 2
ρ ρP P

EK E∂
= − −

∂
,                                        (1.98) 

 

удобно представить в виде ряда 
 

 ( )1
0

1 2 1 ρ cos ψ
4 1 ρ

n

nn
n P

nE P
n

∞

+
=

+
=

π −
∑ .                       (1.99) 

 

где эта сумма не включает слагаемое 1n = ; 
E  – функция двух точек P  и Q , где P  – точка вычисления, Q  – точка 

интегрирования;  
ψ  – угол между их радиус-векторами Pρ  и ρ , соответственно. 
Сумму этого ряда можно выразить через обобщённую функцию Стокса 

 

( ) 2 2 2
ρ ρ cos ψ2 1 3 5ρ 3ρρ ,ψ,ρ cos ψ cos ψ

ρ 2ρρ ρ ρ
P

t P
P PP P P

rrS ln
r

− +
= + − − − ,  (1.100) 

 

разложение в ряд которой имеет вид 
 

 ( ) ( )1
2

2 1 ρρ ,ψ,ρ cos ψ
1 ρ

n

t P nn
n P

nS P
n

∞

+
=

+
=

−
∑ .                 (1.101) 

 

Тогда (1.99) принимает вид 
 

 ( )1 1ρ ,ψ,ρ
4π ρt P

P
E S

 
= − 

 
,                              (1.102) 
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а (1.96) выглядит так: 
 

 ( )1 1λ ρ ,ψ,ρ
4π ρt P

P
T S d

Σ

 
= − Σ 

 
∫∫ .                        (1.103) 

 

Подставив (1.99) и (1.101) в (1.98), получим вид ядра 
 

 ( )
2 2

3 3
ρ ρ1 3 ρρ ,ψ,ρ = cos ψ

4π 4πρ ρ
P

P
P P

K
r
−

− − .                (1.104) 

 

Дальнейшие преобразования с учётом того, что радиальная производ-
ная T  терпит разрыв на теллуроиде, приводят к интегральному уравне-
нию Бровара 

 

 
2 2

3
ρ ρ1λ cosβ λ

4 ρ
P

P
d g

rΣ

−
− Σ = ∆

π ∫∫
.                        (1.105) 

 

Это уравнение гораздо проще уравнения (1.75), полученного Молоден-
ским, поскольку оно обращается в нуль при P Rρ = ρ =  (теллуроид сов-
падает со сферой) в отличие от (1.75). 

Дальнейшая процедура аналогична описанной в пункте 1.6.1. В (1.105) 
осуществляется переход от интегрирования по теллуроиду к интегрирова-
нию по единичной сфере 

 

 
2 2

2
3

σ

ρ ρ1λ cosβ ρ sec σ
4 ρ

P

P
d g

r
−

− βλ = ∆
π ∫∫

.                (1.106) 

 

Затем вводится новая вспомогательная функция 
 

 secµ = λ β ,                                         (1.107) 
 

с которой (1.106) принимает вид 
 

 2 2
2 2

3
σ

ρ ρ1μ cos β ρ μ σ
4 ρ

P

P
d g

r
−

− = ∆
π ∫∫

.                      (1.108)  

 

Плоская аппроксимация позволяет упростить это уравнение [7] 
 

 2
2

3
σ

μ cos β μ σ
2

PH HR d g
r
−

− = ∆
π ∫∫

.                      (1.109) 
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Далее применяется стягивание по Молоденскому. При этом неизвест-
ная функция µ  представлена в виде ряда 

 

0
μ μn

n
n

k
∞

=
= ∑ . 

 

Приходим к интегральному уравнению: 
– при 0n =  

 

0 gµ = ∆ ; 
 

– при 0n >  
 

 ( )
2 2 1

2
2 2 1 2

0 0 σ 0

η1 μ tg β μ σ 0
2

rM Nr r
n r r n r

r r

Rb d
r

+

− − −
= =

− − =
π

∑ ∑ ∫∫ .     (1.110) 

 

Решая это уравнение относительно nµ , получим 

 ( ) ( )
2 12

2
2 1 22 3

0 1σ 0
μ μ σ 1 μ tg β

2

rN M rP r
n r n r n rr

r r

H HRb d
r

+

− − −+
= =

−
= − −

π
∑ ∑∫∫ ,   (1.111) 

 

где 
 

 ( ) ( )
( )22

2 1 !
1

2 !
r

r r

r
b

r

+
= − .                                     (1.112) 

 

Формула (1.111) выражает nµ  через 0 1 1, ,..., ,n−µ µ µ  что позволяет по-

следовательно вычислять nµ , начиная с 0 gµ = ∆ . 
Наконец, приступим к вычислению потенциала T . Опускаем здесь по-

дробности вывода последующих соотношений; их можно найти в  
[7, 17, 29]. 

Выражение (1.103) может быть представлено в виде ряда по степеням 
вспомогательного параметра ,k 0 1,k   

 

 
0

n
n

n
T k T

∞

=
= ∑ ,                                      (1.113) 

 

где 
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 ( )0 0
σ

μ ψ 1 σ
4 t
RT S d= −  π ∫∫

,                              (1.114) 

 

 ( ) ( )22

22 1
1 0

μ ψ 1 μ
4 2

rM P
n n t r n rr

r

H HR RT S d a d
t −+

=σ σ

−
= − σ + σ  π π

∑∫∫ ∫∫ ,    (1.115) 

 

 ( ) ( )
( )22

2 !
1

2 !
r

r r

r
a

r
= − .                                   (1.116) 

 

При 1k = , что соответствует реальной поверхности Земли, имеем 
 

 
0

n
n

T T
∞

=
= ∑ .                                        (1.117) 

 

Итак, алгоритм решения следующий: сначала необходимо вычислить 

nµ , применяя (1.111), (1.112); затем определить nT  по формулам (1.114)–
(1.116); и, наконец, вычислить T  по формуле (1.117). 

Эта процедура проще, чем решение Молоденского, так как здесь за-
действован только один набор неизвестных nµ , тогда как в решении Мо-

лоденского участвует два набора n−χ  и nG . 

Для наглядности выпишем  выражения для nµ  и nT  при 0,1,2,3,...n =  
 

0μ g= ∆ , 
 

2

1 03
σ 0

μ μ σ,
2

PH HR d
r
−

=
π ∫∫  

 
2

2
2 1 03

σ 0
μ μ σ μ tg β,

2
PH HR d

r
−

= +
π ∫∫

                     (1.118) 

 

( )32 2
2

3 2 0 13 5
σ σ0 0

3μ μ σ μ σ μ tg β
2 4

PP H HH HR Rd d
r r

−−
= − +

π π∫∫ ∫∫
 

 

... 
и 
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( )0 0
σ

μ ψ 1 σ,
4 t
RT S d= −  π ∫∫  

 

( )1 1
σ

μ ψ 1 σ
4 t
RT S d= −  π ∫∫

,                           (1.119) 

 

( ) ( )22

2 2 03
σ σ 0

μ ψ 1 σ μ σ
4 4

P
t

H HR RT S d d
r
−

= − −  π π∫∫ ∫∫ , 

 

( ) ( )22

3 3 13
σ σ 0

μ ψ 1 μ σ
4 4

P
t

H HR RT S d d
r

σ
−

= − −  π π∫∫ ∫∫
 

 

... 
Отметим, что в работе [30] выведены ряды Молоденского, а в работе 

[31] – ряды Бровара для чистых аномалий силы тяжести и интегрального 
преобразования Хотина-Коха. В наше время эти ряды представляют 
больший практический интерес, чем рассмотренные выше. Причиной это-
го является тот факт, что, благодаря ГНСС, поверхность Земли можно 
считать известной, и, следовательно, исходная гравиметрическая инфор-
мация представлена в виде чистых аномалий силы тяжести. 

1.6.3. Решение с помощью аналитического продолжения 

В пунктах 1.6.1., 1.6.2. описана методика решения основной задачи 
геодезии, использующая представление возмущающего потенциала T  по-
тенциалом простого или обобщенного слоя с последующим решением 
возникающих интегральных уравнений. В работах М. И. Марыча [32]  
и X. Морица [18, 33] использован иной подход, опирающийся на фор-
мальное аналитическое продолжение потенциала с помощью рядов Тей-
лора. Тем не менее, мы отнесли это решение в раздел интегральных урав-
нений, поскольку оно представлено в виде ряда, эквивалентного рядам  
Молоденского и Бровара [34]. 

Пусть g∆  обозначает аномалию силы тяжести на теллуроиде, а g′∆  – 

аномалию на уровне фиксированной точки A  теллуроида. Показана спра-
ведливость следующего ряда Тейлора 

 

 ( ) ( )
2 !

n n

n
nB B

g h gg B g B h
h n h

∞

=′ ′

 ′ ′∂∆ ∂ ∆ ′ ′∆ = ∆ + +     ∂ ∂   
∑ ,           (1.120) 
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где ( ) ( )h H B H B′= −  – высота текущей точки B  теллуроида над отсчет-
ной сферой радиуса R . Отсчетная сфера есть либо геосфера cpR R=  
 (и тогда ( ) 0H B′ = ), либо сфера радиуса ( )cpR R H A= + , проходящая че-

рез точку A   теллуроида, в которой предполагается в дальнейшем вычис-
лять какие-либо характеристики гравитационного поля. В этом случае 

( ) ( )H B H A′ = . Преобразование от g′∆  к g∆  обозначим с помощью опе-
ратора U : 

 

 ( ) ( )g B U g B′ ′∆ = ∆ .                                   (1.121) 
 

Обратный оператор 1U −  запишем в виде [35]: 
 

 1

0 1
n n

n n
g U g g g g

∞ ∞
−

= =

′∆ = ∆ = = ∆ +∑ ∑ ,                      (1.122) 

 

где 
 

0g g= ∆ , 
 

 ( )
1

1
!

k kn n k
n

k

h L g
g n

k
−

=
= − ≥∑ ,                          (1.123) 

 

здесь  
 

k
k

k
fL f ∂

=
∂ρ  

 

обозначает k -кратное применение оператора 
 

 ( ) ( )2

3
02B

f f Bf RLf B d
rσ

− ∂
= ≈ σ ∂ρ π 

∫ ,                    (1.124) 

 

где σ  – единичная сфера, 

0 2 sin
2

r R ψ
=  – расстояние между проекциями фиксированной точки B  

и текущей точки интегрирования на отсчетную сферу. Формула получена 
впервые М. С. Молоденским [36] и позволяет практически посчитать с от-
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носительной погрешностью порядка /h R  вертикальную производную 
гармонической функции по ее значениям на поверхности Σ . 

Так как g′∆  относится к уровенной поверхности, то можно применить 
формулу Стокса 

 

 ( )ψ 1
4 t
RT g S d

σ

′= ∆ − σ  π ∫∫
.                          (1.125) 

 

В итоге получим 
 

 ( )1

0
n

n
T S g T

∞
−

=
′= ∆ = ∑ ,                               (1.126) 

 

где 
 

 ( )1
n nT S g−= ,                                     (1.127) 

 

а 1S−  – обратный оператор Стокса. 
Все решения, рассмотренные нами выше, а именно, – решение  

Молоденского, решение Бровара и решение Марыча-Морица – представ-
ляют собой формальные ряды по степеням параметра k . Возникает есте-
ственный вопрос о связи между собой этих трёх рядов. Л. П. Пеллинен 
[34] показал, что решение Марыча-Морица идентично решению Бровара. 
А эквивалентность решений Бровара и Молоденского доказана в [7]. Та-
ким образом, все эти ряды эквивалентны несмотря на то, что получены 
принципиально разными методами. 

1.6.4. Сходимость рядов Молоденского 

В работе [37] предложена дальнейшая формализация оператора Моло-
денского 

 

 ( ) 2TM T T∂
= +
∂ρ ρ

,                                      (1.128) 

 

и последующее разложение его в степенной ряд Тейлора по малому пара-
метру с начальным приближением в виде оператора Стокса. Такой подход 
позволяет рассмотреть вопрос о сходимости рядов Молоденского с пози-
ции общей теории линейных операторов в банаховых пространствах. 
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Пусть ( , , )B ρ θ λ  – текущая точка теллуроида Σ со своими сфериче-
скими координатами, причем  

 

( ),B B BR h ′ ′ρ = + θ λ , 
 

где R  – радиус отсчетной сферы s  наибольшего радиуса, целиком рас-
положенной в теле Земли;  

      B′  – точка отсчетной сферы, лежащая с точкой B  на одном и том 
же радиус-векторе;  

      ( ),B B Bh h ′ ′= θ λ  – известная достаточно гладкая функция высоты 

Bh  точки B  над отсчетной сферой. Полагая, что поверхность теллуроида 
имеет звездную форму, можно говорить о взаимно однозначном соответ-
ствии между точками B  и B′  

 

( ) ( )( ), , , , ,B R B R h′ θ λ ↔ + θ λ θ λ . 
 

Введем в рассмотрение более общее отображение 
 

 ( ) ( )( ), , χ , , ,B R B R h′ θ λ ↔ + ⋅ θ λ θ λχ ,                     (1.129) 
 

задающее семейство χΣ  замкнутых поверхностей, возмущенных отно-

сительно отсчетной сферы и зависящих от числового параметра возмуще-
ния χ  таким образом, что при 1χ =  поверхность 1Σ  совпадает с теллуро-
идом ,Σ  а при 0χ =  поверхность совпадает с отсчетной сферой s . Пусть 

Xχ  – множество потенциалов T , гармонических вне поверхности χΣ  
 и регулярных на бесконечности. Чтобы снабдить это множество метри-
кой, выделим в нем подмножество 

 

 ,                                      (1.130) 
 

где 2,
qW χ  – соболевское пространство q-гo порядка функций, определен-

ных во внешности поверхности χΣ .  

В таком случае (1.130) есть гильбертово пространство гармонических 
вне χΣ  и регулярных на бесконечности функций, скалярное произведение 

2, 2,
q qГ X W= ∩χχ χ
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в котором принимает во внимание производные всех порядков до q  
включительно, при этом q  не обязательно целое. Известно, что 

 

 
1 2 1 22,χ 2,χГ Г , χ χq q⊂ < ,                            (1.131) 

 

так что 
 

2,0 2 2,χГ Г Г χ 0q q q= ⊂ ∀ > , 
 

причем вложение плотно. Определим на множестве 2,χГq  линейный опера-

тор, действующий по правилу 
 

 

χ

χ
2T T g

Σ

 ∂
− − = ∆ ∂ρ ρ 

,                              (1.132) 

 

в гильбертово пространство 2L χΣ  аномалий силы тяжести gχ∆ на по-

верхности χΣ . Для его ограниченности необходимо полагать 3
2

q > , по-

скольку (1.132) содержит операции дифференцирования (порядок 1)  

и сужения (порядок 1
2

). При 0χ =  формула (1.132) определяет собой из-

вестный оператор краевого условия Стокса S . При 1χ =  получается опе-
ратор краевого условия Молоденского M  (1.128). Область определения  
и множество значений операторов (1.132) различны при различных χ . 
Для удобства рассуждений об использовании рядов Тейлора мы будем 
иметь в виду лишь такие операторы (1.132), область определения которых 
сужена до 2Гq , а множество значений составляют всевозможные функции 

gχ∆ , отнесенные без изменений к поверхности сферы s  по правилу 
 

 ( ) ( ) ( ) ( )2 2 χL s g B g B L′∋ ∆ ≡ ∆ ∈ Σ ,                      (1.133) 
 

где точки B S∈  и B χ′∈Σ  связаны соотношением (1.129).  

Заметим, что при этом правило (1.132) по-прежнему зависит от χ  как 
от параметра, и потому введенные операторы мы будем обозначать Mχ . 

Таким образом, 
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 ( )χ 22: ГqM L s→ ,                                    (1.134) 
 

представляет собой абстрактную [9] операторнозначную функцию 
Mχχ→  числового параметра χ . 

Предположим, что функция (1.132) на промежутке [0, ]cχ∈ , где 0,c  
непрерывно дифференцируема  n  раз. Тогда ее можно представить рядом 
Тейлора: 

 

 ( ) ( ) ( ) ( )( ) ( ) ( )1 1
χ χ χ χ0 0 0

1χ χ χ
1 !

n n n
nM M M M r

n
− −′= + + + +

−


,      (1.135) 

 

где ( , ,..., )nχ = χ χ χ  и абстрактная функция nr  такова, что ( ).n
nr O= χ  

Нижний индекс 0  указывает на то, что речь идет о значении соответ-
ствующих производных в точке 0χ = . В частности, 0 0( )M M Sχ = =  

есть оператор Стокса. 
Рассмотрим смысл первой производной. Производная абстрактной 

функции ( )Mχ ′  есть так же, как и сама абстрактная функция ( )Mχ , неко-

торый оператор, отображающий числовой промежуток [0, ]c  на линейное 

пространство операторов, действующих из 2Гq  в 2 ( )L s . Так что 0( )Mχ ′  

представляет собой конкретный оператор, отображающий 2Гq  в 2 ( )L s . 
Второе слагаемое в правой части (1.135) можно записать в виде 

 

 ( )χ 0
0 0

χ χ χ χ
χ χ

hdM dM d SM
d d h

χ χ   ρ ∂′ = = =   ∂ρ ∂   
,              (1.136) 

поскольку χhRρ = + . 
Таким образом, 0( )Mχ ′  есть оператор обобщенного дифференцирова-

ния по h  аномалии силы тяжести на поверхности сферы и умножения  
на .h  Аналогичные рассуждения для производных более высокого поряд-
ка в (1.135) приводят к следующему ряду Тейлора для возмущенного опе-
ратора Mχ : 

 

( ) ( )2
2

2

χ χ
χ

2! !

nh h n
h

n
S S SM S
h nh hχ
∂ ∂ ∂

= + + + + +
∂ ∂ ∂



.                 (1.137) 
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Результат действия операторов обеих частей равенства (1.137) на воз-
мущающий потенциал T  дает ряд 

 

 ( )0 0
χ 0

2

χ
χ

!

nh n
h

n
n

g gg g
h n h

∞

=

∂∆ ∂ ∆
∆ = ∆ + +

∂ ∂
∑ ,                       (1.138) 

 

что совпадает при 1χ =  с равенством (1.119), так как g′∆  есть исходная 
аномалия силы тяжести g∆  на поверхности теллуроида, a 0g∆  в (1.138)  
и g′∆  в (1.119) обозначают одно и то же. 

Для существования первой производной аномалии силы тяжести на 
сфере необходимо, чтобы 1

0 2 ( )g W s∆ ∈ , что выполняется лишь в том 
случае, когда 2ГqT ∈  с 3 2 1 5 2q + = . Аналогично, для существования  
n-ой производной в (1.138) необходимо, чтобы 2ГqT ∈  с 3 2q k+ . 

Таким образом, для сходимости рядов (1.137), (1.138) необходимо, 
чтобы сужение потенциала на отсчетную сферу и значения на этой сфере 
аномалии силы тяжести были аналитическими функциями. Если Mχ  – 

аналитическая функция, то обратный оператор 1M −
χ , разрешающий зада-

чу Молоденского с краевым условием (1.132), также является аналитиче-
ской функцией возмущения и потому справедливо разложение: 

 

 ( ) ( )( ) ( )1 1 1
,χ0 01 0

1 χ
!

n n
n

n n
M M M T

n

∞ ∞
− − −
χ χ χ

= =
= + =∑ ∑ ,            (1.139) 

 

где ( )1 1
0

M S− −
χ =  – обратный оператор Стокса, разрешающий краевую 

задачу Молоденского в нулевом приближении.  
С использованием правил дифференцирования обратного оператора  

и с учётом (1.136) для общего члена ряда получается следующая формула: 
 

 ( )( ) ( )1 1
,0

1 χ
!

n n
nM S g

n
− −
χ χ= ,                            (1.140) 

 

где 
 

 ( ) ,χ
,χ

1

χ

!

lh ln n l
n l

l

g
g

l h
−

=

∂
= −

∂
∑ .                             (1.141) 
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При 1χ =  ряд (1.141) совпадает с рядом (1.126). Таким образом, опера-

торы Молоденского (прямой Mχ  и обратный 1M −
χ ) удобно трактовать 

как возмущенные операторы Стокса (соответственно прямой S  и обрат-

ный 1S− ), а ряды Молоденского (1.137)–(1.139) непосредственно полу-
чаются как ряды Тейлора для операторнозначных функций малого пара-
метра возмущения в окрестности оператора Стокса. 

Обсудим теперь условия сходимости рядов Молоденского. Мы уже 
видели, что необходимым условием сходимости является аналитичность 
аномалии силы тяжести g∆  на сфере. Тот факт, что функция g∆  анали-
тична во внешней относительно сферы области (поскольку произведение 

gρ∆  гармонично там же, где гармоничен потенциал) не гарантирует 
нужное поведение аномалии силы тяжести на границе области, в частно-
сти, на сфере. Если полагать, что реальный возмущающий потенциал ап-

проксимируется элементами пространства 2Гq  c 5 2q = , то в рядах 
(1.137)–(1.139) целесообразно удерживать только нулевое и первое при-
ближения. Сходимость последующих итераций гарантировать не удается, 

так как порядок операторов – производных типа ( )nMχ  и ( )( )1 n
M −

χ  – равен 

3 2 n+ , и потому их ограниченность при 5 2q =  имеет место лишь при 
1.n  Таким образом, с увеличением номера приближения в задаче Моло-

денского происходит потеря гладкости решения. Аналогичные явления 
подчеркивались в работе [38]. 

Расходящийся ряд, используемый для аппроксимации некоторого эле-
мента T , называется полусходящимся или асимптотическим, если по-
грешность аппроксимации n-ой частичной суммой, прежде чем вновь 
начнет возрастать, убывает до некоторого минимума, достигаемого при 
определенном значении 0n  номера n  [39]. 

Пользуясь этим определением, можно считать ряды Молоденского для 
потенциалов из гильбертова пространства 5 2

2Г  полусходящимися с 

0 1n = . Другими словами, при наличии непрерывных исходных данных по 
всей Земле имеет смысл ориентироваться только на нулевое (стоксово)  
и первое приближения. При этом наиболее важное значение возмущаю-
щего параметра 1χ =  допустимо. 

Однако достаточно, используя оператор сглаживания с бесконечно 
дифференцируемым ядром, осуществить скользящее сглаживание реаль-
ного поля по любым, как угодно, малым ячейкам сферы, и мы получим 
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бесконечно дифференцируемую аномалию силы тяжести. Поэтому прак-
тически целесообразно вслед за автором работы [18] полагать аномалию 
силы тяжести аналитической функцией на сфере и попытаться оценить 
допустимые значения возмущающего параметра в рядах (1.137)–(1.139).  
В связи с этим представляет интерес следующее утверждение. 

Теорема 9. [4] Пусть существуют такие положительные числа c  
и В , что, начиная с некоторого номера N , выполняется неравенство 

 

 

2

!
n

n
n

L

H cn B n N
H
∂

≤ ∀ >
∂

.                        (1.142) 

 

Тогда ряды Молоденского сходятся при любом 1
c

χ < . 

Следствие 2. Если при n N>  норма 

2

n
n

n
L

H
H
∂
∂

с увеличением n  на 

единицу возрастает не более чем в ( 1)c n +  раз, то ряды Молоденского 

сходятся при любом 1
c

χ < . 

Следствие 3. Если неравенство (1.142) справедливо при 1c <  для 
n N∀ > , то ряды Молоденского сходятся на поверхности теллуроида. 

Таким образом, сходимость рядов Молоденского существенно зависит 
от гладкости изучаемого гравитационного поля и гладкости изучаемой 
поверхности Земли. 

Аналогичные выводы приводятся и в [7]. 

1.7. О существовании и единственности решения  
нелинейной задачи Молоденского 

Для практики линейная задача Молоденского достаточна в подавляю-
щем большинстве случаев. Но нелинейная постановка играет важную роль 
при изучении вопросов существования и единственности решения. 

Хёрмандер предложил итерационное решение нелинейной задачи Мо-
лоденского [38]. Для рассмотрения его результатов нам понадобятся неко-
торые сведения о банаховых пространствах и нормах. 

Пространство действительных непрерывных функций f , определён-

ных на некотором компактном множестве nB R⊂  с нормой 
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 ( )0 max
x B

f f x
∈

=


 ,                                     (1.143) 

 

будем в дальнейшем обозначать 0H ; 1 2( , ,..., )nx x x x=
 . Множество не-

прерывных и непрерывно дифференцируемых функций, обладающих ко-
нечной нормой вида 

 

 ( )1 sup sup
x B x B i

ff f x
x∈ ∈

∂
= +

∂ 

 ,                              (1.144) 

 

образуют банахово пространство 1H . 
Для задач теории потенциала важное значение имеют простанства 

,H α  промежуточные между 0H  и 1H . Множество непрерывных функ-
ций, удовлетворяющих условию Гёльдера с показателем 0 1< α <  

 

 ( ) ( )
,
sup

x y B

f x f y

x y α
∈

−

− 

 

 

,                                   (1.145) 

 

образуют банахово пространство H α . Для этих функций величина 

(1.145) конечна. Нормой в пространстве H α  служит 
 

 ( ) ( ) ( )
,

sup sup
x B x y B

f x f y
f f x

x yα α
∈ ∈

−
= +

−  

 



 

.                     (1.146) 

 

Это множество функций, промежуточных между непрерывными  
и непрерывно дифференцируемыми. В дальнейшем под 1H  будем пони-
мать пространство функций, удовлетворяющих условию Гёльдера при 

1α = . Обобщим норму (1.146) для случая 1α >  следующим образом 
 

 ( )
( ) ( )

,
sup sup

k k

k
x B x y B

D f x D f y
f f x

x yα α−
∈ ∈

−
= +

− 

 



 

,                   (1.147) 

 

где ( )kD f x  обозначает любую производную k−ого порядка функции f . 

 Пространство H α  состоит из непрерывных функций, которые k  раз 
дифференцируемы, а их производные k−ого порядка удовлетворяют усло-
вию Гёльдера с показателем 0kα −  . 
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Вернёмся теперь к задаче Молоденского. Хёрмандер изменил её фор-
мулировку таким образом, что возможно единственное решение [7]. 

Определить в 3R  замкнутую поверхность S , представляющую собой 
взаимно однозначное отображение единичной сферы, по заданным значе-
ниям g  и W , представляющим собой значения вектора силы тяжести 

1 2 3( , , )g g g g=


 и потенциала W  на поверхности S , так, чтобы выпол-
нялись следующие условия: 

 

 3

1
i iSW W a A= +∑ ,                                    (1.148)  

 

 ( )S S
g g grad W= =
  ,                                (1.149) 

 

 ( ) ( ) ( )2 2 2
1 2

1 ω
2

W x V x x x= + +
  ,                         (1.150) 

 

 0V∆ =  вне S ,                                    (1.151) 
 

 ( ) 3
1constV x O

x x

 
 = +
 
 







.                               (1.152) 

 

Условие (1.152), означающее, что внешний потенциал силы притяже-
ния ( ),V x 1 2 3( , , ),x x x x=



 не содержит шаровой функции первой степе-
ни, обеспечивает единственность решения. 

В новой формулировке задачи отличается условие (1.148). Оно содер-
жит дополнительное слагаемое 

 

 
3

1
i i

i
a A

=
∑ ,                                             (1.153) 

 

представляющее собой линейную комбинацию трёх подлежащих опреде-
лению констант ia  и трёх соответствующим образом подобранных функ-

ций iA . Это слагаемое обеспечивает разрешимость задачи Молоденского 

при любых краевых условиях g  и W . 
Линеаризация модифицированной задачи Молоденского выполняется 

стандартным образом. Единственное отличие соответствующего краевого 
условия состоит в появлении дополнительного слагаемого типа (1.153). 
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Используя итерационную процедуру, Хёрмандер доказал следующую 
теорему существования и единственности решения задачи Молоденского [7]. 

Теорема 10. Зададимся произвольным 0ε > . Тогда: 
1) для всех W  и g  из 2H +ε   в окрестности  0W  и 0g   модифици-

рованная задача Молоденского (1.148)–(1.152) имеет решение S , близкое 
к 0S = Σ  в 2H +ε , и 1 2 3( , , )a a a , близкий к 0 в 3R ; 

2) если W  и g  принадлежат H α  при некотором 2α > + ε , не яв-

ляющемся целым числом, то ;S H α∈  

3) существует некоторая окрестность 0S  в 3H +ε , которая не 
может содержать двух решений задачи. 

Здесь 0W  и 0g  представляют собой начальные значения W  и g   

в итерационной процедуре решения задачи Молоденского, а 0W  и 0g  – 

их значения на поверхности 0S . В качестве 0W  и 0g  можно взять нор-
мальный потенциал U  и вектор нормальной силы тяжести γ



, а роль 0S  

может играть теллуроид. 
Эта теорема накладывает очень жёсткие условия на искомые поверх-

ность S  и потенциал W ; реальная поверхность Земли и реальный потен-
циал вряд ли будут удовлетворять таким требованиям гладкости. 

Совершенно иной подход к нелинейной задаче был предложен Сансо 
[40, 41]. Здесь следуем изложению, представленному в [7]. 

Решение Сансо состоит в использовании компонент вектора силы тя-
жести 1 2 3( , , )g g g g=

  в качестве прямоугольных координат точки во 
вспомогательном пространстве, называемом гравитационным. Потенциал 
W  становится функцией ig  

 

1 2 3( ) ( , , )W W g W g g g= =
 .                            (1.154) 

 

В постановке краевой задачи предполагается, что на поверхности  
известны компоненты ig  вектора силы тяжести. Если описать s  в терми-

нах новых координат ig , то она преобразуется в известную поверхность 

gs  в гравитационном пространстве, а краевая задача со свободной грани-

цей преобразуется в задачу с фиксированной границей. 
Основной недостаток такого подхода состоит в том, что взаимно одно-

s
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значное соответствие между прямоугольными координатами ix  и ig  на по-
верхности s  и во внешнем пространстве возможно только для невращаю-
щейся Земли. Однако, слагаемое, соответствующее центробежной силе 

 

 ( ) 2ω eg grad W x grad V x= = +
   ,                       (1.155) 

 

мало по сравнению с членом, отражающим вклад силы притяжения; здесь 

1 2( , ,0)ex x x=
 . Например, 2 3exω ≈

  Гал в отличие от 310gradV ≈  Гал.  

К тому же, влияние центробежного потенциала и его градиента можно 
вычислить, используя референц-фигуру, например, общеземной эллипсо-
ид, и удалить это влияние из доступных для непосредственного измерения 
W  и gradW . Остаточные значения имеют порядок произведения 
10−5−10−6 на соответствующие главные члены [42]. 

Для сохранения терминологии автора идеи, в дальнейшем под g  бу-
дем понимать 

 

g grad V=
 .                                        (1.156) 

 

Пространство Ω , внешнее относительно S , отобразится в простран-
ство gΩ , внутреннее относительно gS ; соответственно, бесконечно уда-

лённая точка в обычном пространстве перейдёт в начало координат в гра-
витационном. 

Теперь переформулируем задачу Молоденского в рамках концепции 
гравитационного пространства: найти функцию ( )V x , гармоническую  

в области Ω , внешней относительно неизвестной поверхности S , 
 

0V∆ = ,                                            (1.157) 
 

и удовлетворяющую на S  следующему краевому условию 
( )SV V u= ,                                         (1.158) 

 

( ) ( )S
gradV g u=

 ,                                   (1.159) 
 

где ( , )u = ϕ λ  – двумерный параметр, ,ϕ λ  – астрономические широта  
и долгота, соответственно. 

Новые координаты ig  являются функциями прямоугольных коорди-

нат ix  
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( )i i jg g x= .                                       (1.160) 
 

Для существования обратного преобразования 
 

( )j j kx x g= ,                                          (1.161) 
 

необходимо, чтобы якобиан det i

j

dg
dx

 
  
 

 был отличен от нуля на поверхно-

сти S и вне её. Так как 
 

i
i

Vg
x
∂

=
∂

,                                              (1.162) 

 

то это условие равносильно следующему 
 

2
det 0

i j

V
x x

 ∂
≠  ∂ ∂ 

,                                      (1.163) 

 

называемому условием Марусси. В дальнейшем будем полагать, что оно 
выполняется там, где это необходимо. 

Итак, задача Молоденского сводится к задаче с фиксированной гра-
ницей в гравитационном пространстве. Но проблема состоит в том, что 
неизвестна форма того линейного дифференциального уравнения в част-
ных производных, в которое преобразуется уравнение Лапласа в гравита-
ционном пространстве, так как неизвестно преобразование (1.160). 

Чтобы обойти эту проблему, Сансо ввёл сопряжённый потенциал 
 

 ψ k kx g V x g V= ⋅ − = −
  .                              (1.164) 

 

В результате дифференцирования выражения (1.164) получим 
 

 ψ
i

i
x

g
∂

=
∂

,                                          (1.165) 

 

или 
 

ψgx grad=
 .                                        (1.166) 

 

Величины ig  и ψ  связывают такие же соотношения, что и ix  и V ,  
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а формула (1.164) позволяет выразить один потенциал через другой 
 

 ψ k
k

Vx V
x
∂

= −
∂

,                                         (1.167) 

 

ψ ψk
k

V g
g
∂

= −
∂

.                                         (1.168) 

 

Такая же замечательная связь видна между матрицами вторых произ-
водных этих потенциалов: 

 

 
2

ψ
ψ i

i j j

xM
g g g

   ∂∂
= =      ∂ ∂ ∂   

,                                (1.169) 

 
2

i
V

i j j

gVM
x x x

   ∂∂
= =      ∂ ∂ ∂   

,                                  (1.170) 

то есть 
 1

ψVM M −= .                                         (1.171) 

Оператор Лапласа 
 

2 2 2

2 2 2
1 2 3

V V VV
x x x

∂ ∂ ∂
∆ = + +

∂ ∂ ∂
,                                 (1.172) 

 

представляет собой теперь след матрицы 
 

 0VTrM = .                                           (1.173) 
 

Это значит, что мы можем записать соответствующее уравнение для 
сопряженного потенциала. Из (1.171) и (1.173), получим 

 

( )1
ψ 0Tr M − = .                                        (1.174) 

Для сокращения записи введём обозначение 
 

 
2ψψij
i jg g
∂

=
∂ ∂

,                                      (1.175) 

 

тогда матрица (1.169) запишется так 
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11 12 13

ψ 21 22 23

31 32 33

ψ ψ ψ
ψ ψ ψ
ψ ψ ψ

M
 
 =  
 
 

.                               (1.176) 

 

Обращая её и вычисляя затем след, получим 
 

 
2 2 2

11 22 12 22 33 23 11 33 13ψ ψ ψ ψ ψ ψ ψ ψ ψ 0− + − + − = .       (1.177) 
 

Это и есть то уравнение, которому удовлетворяет сопряжённый по-
тенциал в гравитационном пространстве. Однако, это уравнение нелиней-
ное. 

Так как в гравитационном пространстве g  является вектором место-
положения, то величина силы тяжести g  играет роль модуля радиус-
вектора, см. (1.1). Тогда производная по g  представляет собой радиаль-
ную производную: 

 

 ψ ψ ψk k

k k

g g
g g g g g

∂∂ ∂ ∂
= =

∂ ∂ ∂ ∂
.                             (1.178) 

 

Отсюда 
 

 

ψ ψ
k

k
g g

g g
∂ ∂

=
∂ ∂ .                                      (1.179) 

 

Поэтому уравнение (1.168) принимает вид 
 

 

ψ ψV g
g
∂

= −
∂ ,                                       (1.180) 

 

а краевое условие в гравитационном пространстве выглядит так 
 

 
( )ψ ψ

gS

g V u
g

 ∂
− = ∂ 

.                             (1.181) 
При ρ→∞  в обычном пространстве 

 

 
3

10V
 µ

= +  ρ ρ 
,                                      (1.182) 
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2 4

10V
 µ

= +  
ρ ρ 

,                                    (1.183) 

 

где 
 

 GMµ =                                           (1.184) 
 

– произведение гравитационной постоянной на массу Земли. 
При 0gρ→∞ → ; решая (1.182) относительно 1

ρ
 и подставляя ре-

зультат в (1.183), получим 
 

( )1 2 1 2 3 2V g O g= µ + .                              (1.185) 
 

Это соотношение описывает поведение V  при 0g → . Так же имеет 
место следующее соотношение для ψ  

 

 ( )1 2 1 2 3 2ψ 2 g O g= − µ + .                           (1.186) 
 

Теперь формулировка краевой задачи геодезии в гравитационном 
пространстве будет выглядеть следующим образом: найти решение диф-
ференциального уравнения (1.177) в области gΩ  с краевым условием 

(1.181) на gS . 

Поверхность Земли S  определяется из уравнения 
 

 ( )ψ
g

gS S
x grad=
 .                              (1.187) 

 

Так как направление дифференцирования g∂ ∂  по радиус-вектору  
в гравитационном пространстве в общем случае отличается от направле-
ния нормали к gS , то имеем задачу с косой производной, известной по-

верхностью  и линейным краевым условием (1.181), но для нелинейно-

го дифференциального уравнения в частных производных (1.177). 
Пусть теперь ψ  – какое-нибудь решение сформулированной краевой 

задачи. Можно показать, что тогда функция 
 

ψ̂ ψ i ic g= + , 
 

gS
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где ic  – произвольные константы, тоже является решением этой задачи.  
В обычном пространстве добавление к ψ  члена i ic g  означает смеще-

ние на вектор ic  
 

ψ̂ˆi i i
i

x x c
g
∂

= = +
∂

. 

 

Для единственности решения на ψ  необходимо наложить ограничение 
(1.186), означающее, что начало координат x  расположено в центре масс 
Земли. 

Для существования решения при любых краевых значениях необходи-
мо изменить краевое условие (1.181) следующим образом 

 

 ( )ψ ψ Vk i i
k

g u a g
g
∂

− = +
∂

 на gS                         (1.188) 

 

то есть появляется слагаемое, представляющее собой линейную комбина-
цию ig  с тремя константами ia , подлежащими определению. 

Для доказательства теоремы существования и единственности краевой 
задачи в новой постановке Сансо, также как и Хёрмандер, использовал 
итерационную процедуру. Основную трудность при этом представляет 
уравнение (1.177). Для того, чтобы иметь возможность решить это урав-
нение итерационно, пришлось прибегнуть к довольно сложным преобра-
зованиям с введением в рассмотрение новых функций и потенциалов. По-
дробности можно найти, например, в [7]. 

Сансо удалось ослабить ограничения, накладываемые на исходные 
данные в теореме Хёрмандер 10. Он показал, что для существования  
и единственности решения достаточна близость искомого и начального 
потенциалов в метрике пространства 1H +ε  тогда, как в теореме Хёрман-
дера требовалась близость в пространстве 2H +ε  для существования реше-
ния и даже в 3H +ε  для его единственности. Но результаты Хёрмандера 
получены для поля силы тяжести, тогда как Сансо работал с полем силы 
притяжения. 

Позже Сансо показал [43], что взаимно однозначное соответствие 
между x  и g  в случае, когда под g  понимается сила тяжести, а не сила 
притяжения, имеет место, по меньшей мере, в шаровом слое до 6,6R  (вне 
масс), где R a= , то есть экваториальному радиусу Земли. А значит, идея 
гравитационного пространства может быть применена и к потенциалу си-
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лы тяжести. Но в работе [43] рассматривается конкретно шаровой слой от 
R  до 2R  в предположении, что дополнительно известны значения потен-
циала силы тяжести W  и вектора силы тяжести g  на сфере радиуса . 
Таким образом, Сансо приходит к новой формулировке краевой задачи. 

Пусть известны значения W  и g  на двух поверхностях 1S  и 2S , где 1S   – 
физическая поверхность Земли, 2S  – замкнутая поверхность, охватываю-
щая 1S . Пусть, далее, 

 

 
( ) ( )

( ) ( )

1 2

1 2

1 2

1 2

, ;

, .

S S

S S

W w u W w u

g g u g g u

= =

= =
   

                             

(1.189) 

 

 Требуется найти сопряжённый потенциал ( )gψ
 , удовлетворяющий 

уравнению 
 

( )1 2Tr M −
ψ = ω ,                                      (1.190) 

 

и краевым условиям 
 

 
( ) ( )

( ) ( )

1

2

1 1

2 2

ψ ψ ,

ψ ψ ,

G

G

g w u c g u
g

g w u c g u
g

∂
− = + ⋅

∂

∂
− = + ⋅

∂

 

 

                        (1.191) 

 

где 1G  и 2G  – те поверхности в гравитационном пространстве, в которые 
отображаются 1S  и 2S ; 

 c  – вектор неизвестных постоянных.  
Вторые слагаемые в правых частях (1.191) обеспечивают существова-

ние решения при любых исходных данных. Кроме того, для обеспечения 
единственности решения дополнительно накладывается условие 

 

 
3

ψ 0
G

gdG =∫
 ,                                          (1.192) 

 

2R



 

69 

где 3G  – сфера, расположенная между поверхностями 1G  и 2G  вместе с 
некоторой своей окрестностью. Тогда поверхность S  определяется сле-
дующим образом 

 

 ( ) ( )11 ψ g ux u grad= 

 .                                (1.193) 

 

Для задачи (1.189)–(1.192) доказана следующая теорема существова-
ния и единственности: 

Если 1G , 2G  имеют звёздную форму, а функции, их определяющие, 

принадлежат пространству 2 ,H +ε  1
1 2( ), ( )w u w u H +ε∈ ; кроме того, 

1( ),w u  2 ( )w u  находятся в малой окрестности (в 1H +ε ) 
1 21 2

01 1( ) ( ),w u M g u= 1 21 2
02 2( ) ( );w u M g u=  2ω  находится в малой 

окрестности 0, то задача (1.189)–(1.192) имеет единственное решение 
2( )g H +εψ ∈   в малой окрестности 1 2 1 2

0 2M gψ = − . 
Вследствие этой теоремы функция (1.193), определяющая поверх-

ность Земли, является единственным решением краевой задачи в классе 
1H +ε  в окрестности сферы. 

Линеаризация задачи Сансо приводит к тем же результатам, что и при 
обычном подходе. Так что, с практической точки зрения, концепция гра-
витационного пространства не даёт ничего нового. Но эта идея оказалась 
очень плодотворной для изучения краевой задачи геодезии с теоретиче-
ской точки зрения. Она позволила глубже понять краевую задачу геодезии 
и снабдила науку новыми методами изучения этой задачи с математиче-
ской точки зрения. 

1.8. Современные формулировки  
краевой задачи физической геодезии 

Помимо классической формулировки задачи со свободной границей  
в литературе предложено большое количество иных формулировок крае-
вой задачи физической геодезии. Сильное влияние на развитие этого 
направления оказало появление глобальных спутниковых систем навига-
ции, позволяющих определять координаты точек поверхности Земли. Это 
позволяет, с одной стороны, рассматривать концепцию краевой задачи  
с фиксированной границей, поскольку можно полагать поверхность Земли 
известной. С другой стороны, в качестве исходной информации можно 
рассматривать чистую аномалию силы тяжести вместо смешанной и, со-
ответственно, работать с интегральным преобразованием Хотина-Коха 
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вместо интегрального преобразования Стокса. Мы здесь кратко рассмот-
рим лишь те из них, которые чаще всего встречаются в геодезических 
публикациях, а именно, задачу с фиксированной границей, скалярную за-
дачу, альтиметро-гравиметрическую задачу и переопределённую задачу. 

Задача с фиксированной границей. Начнём с задачи, которая, на наш 
взгляд, представляет наибольший интерес в современных условиях. Такое 
мнение опирается на тот факт, что использование ГНСС позволяет опре-
делять координаты непосредственно точек поверхности Земли в единой 
системе координат. Вследствие этого, можно полагать, что поверхность 
Земли известна, и на ней известны чистые аномалии силы тяжести. 

Наиболее интересный результат, касающийся этой задачи, по-
видимому, получен в работе Sanso and Venuti [44]. Формулировка лине-
аризованной задачи с фиксированной границей даётся в следующем виде. 

Известны:  
– земная поверхность S , то есть функции 

 

 ( ) ( ), ,r R= σ σ = θ λ ,                                    (1.194) 
 

где ( , , )r θ λ  – сферические координаты точек;  
– возмущение силы тяжести (чистая аномалия силы тяжести) на S  

 

 ( ) ( )T P
g

h
∂

= −δ σ
∂

.                                  (1.195) 

 

Требуется найти возмущающий потенциал T  вне S . 
Предполагается, что S  имеет звёздную форму, а функция ( )R σ  огра-

ничена вместе со своими производными первого и второго порядков отно-
сительно ( , )θ λ . 

Доказана следующая теорема: 
Пусть ( ) ( ) ( )F P R g= − σ δ σ  принадлежит 0H  – пространству инте-

грируемых с квадратом функций 2 ( )L S  с нормой 
 

 ( ) ( )2 2
0F F R d

σ
= σ σ σ∫ ,                          (1.196) 

 

и, кроме того, 
 

 1ε 1C + < .                                           (1.197) 
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Тогда T  принадлежит 1H  – пространству гармонических функций, 

след которых содержится в 2 ( )L σ  с нормой 
 

 ( )( ) ( )22 3
1 ,T gradT R R d

σ
= σ σ σ σ∫ ,                  (1.198) 

 

и удовлетворяет неравенству 
 

 21 0T C F ,                                     (1.199) 
 

c 
 

 1
2

11 ε
CC
C +

=
−

,                                      (1.200) 

 

где dσ  – проекция элемента dS  поверхности S  на единичную сферу σ; 

rv eε = −
  

, где v  – единичный вектор нормали к референц-эллипсоиду,  

re  – единичный радиус-вектор точки .P   

В [44] показано, что 
2

max ( )
2
e

+ε = ε σ ≈
  , где e  – эксцентриситет эл-

липсоида. 
Теорема означает, что из выполнения условия (1.197) следует суще-

ствование единственного и устойчивого решения задачи. 
В геометрическом смысле условие (1.197) выполняется, если наклон 

поверхности S  относительно re  не превышает 
 

 2arccos 89,6I e+ = ≈  .                                  (1.201) 
 

( )I σ  – угол между единичным нормальным к поверхности S  векто-

ром n  и re  в точке P , max ( )I I+ = σ . 
Таким образом, единственность и устойчивость решения линеаризо-

ванной задачи с фиксированной границей имеет место практически для 
любой, в разумных пределах, поверхности S , имеющей звёздную форму. 

Скалярная краевая задача физической геодезии. Скалярная поста-
новка была предложена впервые Sacerdote и Sanso [45] в 1985 году. Идея 
состоит в рассмотрении задачи, промежуточной между задачей со свобод-
ной границей и задачей с фиксированной границей. В первом случае из-
вестны значения потенциала и силы тяжести на поверхности, требуется 
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определить саму поверхность и потенциал силы тяжести вне этой поверх-
ности. Во втором случае, известна поверхность и сила тяжести на ней, 
требуется определить потенциал вне этой поверхности. 

Промежуточная формулировка предполагает, что известны плановые 
координаты точек поверхности, то есть широта и долгота (геодезические 
или астрономические), а также потенциал и сила тяжести на поверхности, 
а определению подлежит только третья координата – геодезическая высо-
та точки, а также потенциал вне поверхности. Таким образом, получается 
новая формулировка задачи со свободной границей, но свободной она яв-
ляется только в «вертикальном» направлении; а скалярная – поскольку 
определению подлежит только одна координата вместо трёх. 

Отметим, что в связи с появлением понятия «скалярной краевой задачи 
геодезии» задачу в классической формулировке, где искомыми являются 
все три координаты точек поверхности, в геодезической литературе при-
нято называть «векторной краевой задачей геодезии». 

В [46] доказана теорема о существовании и единственности решения 
нелинейной скалярной краевой задачи при условии, что центробежная 
компонента потенциала рассматривается как возмущение. При этом на 
исходные данные, а именно, силу тяжести g  и потенциал ,W  наклады-

ваются естественные ограничения гладкости ,g H ε− ∈  1W H +ε∈ . 
Задача альтиметрии-гравиметрии. Задача альтиметрии и гравимет-

рии (altimetry-gravimetry problem) рассматривается в двух постановках 
[47]. В обоих случаях предполагается, что центробежная составляющая 
хорошо известна и удалена. Кроме того, известна та часть поверхности S , 
которая соответствует морям. Отличает эти две задачи то, что в одном 
случае полагаем, что известен потенциал на всей поверхности S , а в дру-
гом случае – сила притяжения (т. к. из измерений удалена центробежная 
часть). Обозначим их AGP1 и AGP2, соответственно. 

Далее введём следующие обозначения. Пусть 0P  – точка на эллипсоиде 
с известными координатами ( , )σ = θ λ  на нём, соответствующая точке P  
на поверхности S , h  – геодезическая высота точки ,P  v  – нормаль к эл-
липсоиду в точке 0P ; G  – геоид, Gh  – высота геоида (временно использу-
ем это обозначение для единообразия), 0W  – значение потенциала на геои-
де, 0( )Pγ  – значение нормальной силы притяжения в точке 0P . Следующее 
соотношение означает, что нам известна поверхность S  на море 

 

 ( ) ( )0 0 0Ph h P h P= = .                                 (1.202) 



 

73 

В рамках задачи AGP1 предполагается, что известна топография мор-
ской поверхности, то есть высота морской поверхности над геоидом G : 

 

 ( ) ( ) ( )0 0 0 0Gh P h P h Pδ = − ,                            (1.203) 
 

что, собственно, и позволило нам вычислить значения потенциала на всей 
поверхности S  с достаточным уровнем приближения 

 

 ( ) ( ) ( )0 0 0 0 0PV W P h P P= − γ δ = υ .                      (1.204) 
 

Напротив, как мы уже отметили выше, в задаче AGP2 известна сила 
притяжения g  (сохраняем обозначения [47]) на всей поверхности S , при 
этом над морской поверхностью выполняется соотношение 

 

 ( ) ( )0 0V P hv g∇ + = σ
 .                          (1.205) 

 

Таким образом, формулировки этих задач выглядят так: 
– AGP1 

 

 ( ) ( )
( ) ( )

( )

0 0

0 0

0 0

0 вне ,
на ,
на суше,

на море;P

V S
V P hv S

V P hv g

h h P

∆ =
 + = υ σ
∇ + = σ
 =





                        (1.206) 

– AGP2 
 

 ( ) ( )
( ) ( )

( )

0 0

0 0

0 0

0 вне ,
на ,

на суше,
на море.P

V S
V P hv g S

V P hv
h h P

∆ =
∇ + = σ


+ = υ σ
 =





                       (1.207) 

 

AGP1 (1.208) и AGP2 (1.209) представляют собой нелинейные сме-
шанные краевые задачи (Дирихле и с косой производной) с частично сво-
бодной границей (на суше) для уравнения Лапласа. 

Для этих двух задач в линейной постановке и сферической аппрокси-
мации доказаны теоремы существования и единственности решения. По-
дробности можно найти в работах [47, 48]. 

Переопределённая задача. За последние десятилетия накопились 
большие объёмы измерительной информации. На одну и ту же террито-
рию могут приходиться различные типы геодезических данных, например, 
наземная гравиметрия и градиентометрия. В результате мы сталкиваемся с 
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ситуацией, когда исходных данных больше, чем требуется для однознач-
ного решения задачи. В связи с этим получила распространение переопре-
делённая краевая задача геодезии. Так как все измерения содержат ошиб-
ки, то целесообразно поверхность S  и заданные на ней граничные вели-
чины рассматривать как случайные. 

По-видимому, впервые эта задача была рассмотрена в строгих матема-
тических рамках в работе [45]. Мы здесь приведём формулировку пере-
определённой (overdetermined) краевой задачи геодезии, следуя работе 
[49]. 

Даны функционалы на потенциале на поверхности Земли и вне её, ха-
рактеризуемые статистически их средними значениями и стандартными 
отклонениями. Требуется определить поверхность Земли и её внешнее 
гравитационное поле: 

 

 ( ) 0T x x∆ = ∈Ω
  ,                                   (1.208) 

 

 ( ) , , 1,2,i iB T x f x S i= ∈ =
 


,                          (1.209) 

 

 ( ) 0,T x x= →∞
  ,                                (1.210) 

 

где iB  и if  – оператор и данные i-го типа, соответственно; 
 Ω  – трёхмерная область, внешняя относительно замкнутой поверхно-

сти S ; 
вектор местоположения x  задаётся математическим ожиданием 

{ }0x M x=
   и дисперсией { }2

0 ;D xσ =
  

i -ый тип данных описывается математическим ожиданием 
{ }0Г Гi iM=  и дисперсией { }Г .i iDσ =  

Решение задачи (1.208) обычно отыскивается методом наименьших 
квадратов. 

Дальнейшие подробности можно найти, например, в работах [49–52]. 

1.9. Линейная краевая задача на эллипсоиде 

В геодезической практике в основном рассматриваются краевые задачи 
в линейной постановке и сферической аппроксимации. Последнее упро-
щение приводит к погрешностям порядка сжатия Земли (≈0,3 %), состав-
ляющим 33 10−⋅ . Для многих современных задач этого уже недостаточно. 
Точность измерений и степень покрытия ими поверхности Земли в наши 
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дни позволяет поставить целью глобальный геоид с точностью 1 см [53]. 
Естественно, что для этого необходимо разработать теорию соответству-
ющего уровня точности. Таким образом, возникает необходимость в рас-
смотрении краевых задач на поверхности эллипсоида вращения, который 
гораздо ближе к форме Земли, чем сфера. 

Одно из, видимо, наиболее точных решений краевой задачи на эллип-
соиде получено в работе [54]. Оно позволяет определить внешний возму-
щающий потенциал T  Земли с учетом сжатия отсчетного эллипсоида  
и высот земной поверхности над эллипсоидом, а также с учетом различий 
потенциалов 0iW  силы тяжести в начальных пунктах i  разных государ-
ственных нивелирных сетей. Точность определения возмущающего по-
тенциала в этой задаче составляет 55 10−⋅ . В решении Молоденского [55] 
краевое условие и соответствующее интегральное уравнение записаны  
в геодезических координатах, что обеспечивает точность 85 10−⋅ . Только 
в решении Молоденский переходит к сферическим координатам, прене-
брегая членами порядка 4 55 10e −< ⋅ . В работе [54] переход к сфериче-
ским координатам осуществляется уже в краевом условии, что снижает 
его точность до 55 10−⋅ . Но при этом краевое условие по виду не отлича-
ется от упрощенной постановки в сферической аппроксимации. С той же 
точностью составлено интегральное уравнение. 

Если учитывать тот факт, что нивелирные сети различных государств 
используют в качестве отсчёта различные значения 0iW , отличающиеся 
от нормального потенциала на уровенном референц-эллипсоиде, то крае-
вое условие для возмущающего потенциала на земной поверхности S  
 с относительной погрешностью порядка 85 10−⋅  имеет вид [2] (1.11) 

 

 ( ) ( )0 0
1

S i
S S

T T g W U
H H HΣ
∂ ∂γ ∂γ

− = − − γ − −
∂ γ ∂ γ ∂

.          (1.211) 

 

С использованием сферических координат краевое условие (1.211) 
приведено к более простому и менее точному виду 
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i

T T g
r r Σ

∂
+ = −∆

∂
,                                (1.212) 

 

где 
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2
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r

+ − ,                                         (1.213) 

 

где T  – приближённое значение потенциала; 

еγ  – экваториальное значение силы тяжести на эллипсоиде. 
Решение этой задачи отыскивается стандартным образом – с помощью 

составления интегрального уравнения относительно поверхностной плот-
ности с последующим решением этого уравнения посредством параметра 
Молоденского. После этого можно переходить к вычислению возмущаю-
щего потенциала T . Здесь эти формулы не приводятся в силу их громозд-
кости. Подробности можно найти в [54]. 

В качестве исходных данных при этом требуется иметь информацию 
об аномалиях силы тяжести, высотах и наклонах краевой поверхности 
Земли, а также о приближенном представлении возмущающего потенциа-
ла T  и потенциалах силы тяжести 0iW  в исходных пунктах разных госу-
дарственных нивелирных сетей. 

Изучению краевых задач геодезии на эллипсоиде посвящено множе-
ство работ отечественных учёных, начиная с Загребина (1952 год) [55–60]. 
За рубежом также активно занимаются разработкой этого направления 
[61–68]. В работах [21, 22, 25, 26] использован метод функций Грина. Мы 
не будем подробно останавливаться на рассмотрении этих работ и исполь-
зованных в них подходов, поскольку это может составить тему отдельного 
исследования. 

1.10. Заключение по главе 1 

Главная задача физической геодезии, в классической постановке со-
стоящая в определении поверхности Земли и её внешнего гравитационно-
го поля по значениям силы тяжести и потенциала на поверхности, пред-
ставляет собой, по сути, краевую задачу для дифференциального уравне-
ния Лапласа. Поэтому естественно воспользоваться для решения этой  
и сопутствующих задач методами теории потенциала. К основным клас-
сическим методам решения этой задачи можно отнести следующие: метод 
интегральных уравнений (МИУ), метод функций Грина (МФГ) и метод, 
использующий аппарат рядов по шаровым функциям (МРШФ). 

МИУ состоит в том, что искомый возмущающий потенциал Земли 
представляется в виде потенциала слоя притяжения на краевой поверхно-
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сти [69]. С учётом того, что производные потенциала слоя притяжения 
терпят разрыв на краевой поверхности, краевое условие преобразуется в 
интегральное уравнение или систему интегральных уравнений. Решение 
этого уравнения (или последовательное решение системы уравнений) до-
ставляет искомый потенциал. 

Этим методом были получены классические ряды Молоденского  
и Бровара, обеспечивающие теоретически неограниченные возможности 
повышения точности конечных результатов. Кроме того, МИУ хорошо 
приспособлен к краевым задачам со сложной краевой поверхностью. Этот 
факт выгодно отличает его от двух других классических подходов. Разло-
жение потенциала притяжения Земли в ряды по шаровым или эллипсои-
дальным функциям представляет собой лишь приближённое решение, по-
скольку поверхность Земли не является сферой или эллипсоидом. К тому 
же сходимость этих рядов ухудшается по мере приближения к поверхно-
сти Земли. Построение функций Грина является очень сложной задачей, 
если краевая поверхность не является сферой. 

Однако, при решении интегральных уравнений предполагается, что ис-
ходная информация безошибочна и известна на всей поверхности Земли. 

В действительности, исходные данные, как результаты измерений:  
1) отягощены неизбежными погрешностями;  
2) дискретны;  
3) разнородны по составу;  
4) неравномерно распределены на физической поверхности Земли;  
5) имеются не только на поверхности Земли, но и в ее внешнем про-

странстве. 
Отсюда следует, что при использовании МИУ:  
1) возникает необходимость интерполировать измерения;  
2) нет возможности использовать информацию о точности имеющихся 

данных;  
3) нет возможности совместного использования разнородной инфор-

мации;  
4) нет возможности задействовать измерения во внешнем простран-

стве. 
Кроме того, как отмечал, Л. П. Пеллинен [70], «... для практического 

применения эти методы неудобны, так как на каждой стадии приближе-
ний приходится вычислять в каждой точке физической поверхности не-
собственные интегралы. Это вычисление предъявляет одинаковые высо-
кие требования к знанию высот, аномалии силы тяжести и поправок, 
найденных в предыдущих приближениях, в окрестностях каждой исследу-
емой точки. Другой недостаток указанных методов – физическая нереаль-
ность материальной модели, объясняющей гравитационные аномалии. Из-
за этого распределение плотностей материального слоя оказывается в гор-
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ных районах весьма сложным и неустойчивым даже при спокойном поле 
аномалий силы тяжести, а процесс приближений сильно замедляется». 

Несмотря на перечисленные недостатки, МИУ всё же остаётся востре-
бованным инструментом решения основной задачи геодезии. Например,  
в работе [54] получено одно из наиболее точных решений линейной крае-
вой задачи на эллипсоиде с помощью этого метода. В последние десяти-
летия, вследствие бурного развития компьютерных технологий, активно 
разрабатываются численные методы решения различных инженерных за-
дач. В частности, для решения интегральных уравнений геодезии развиты 
и, по-видимому, получили наибольшее признание метод конечных эле-
ментов и метод граничных элементов, см., например, [71–73], а также ра-
боту [74] и библиографию в ней. Главными достоинствами этих методов 
является возможность рассмотрения реальной топографии Земли и моде-
лирования с высокой разрешающей способностью. При этом они позво-
ляют избавиться от тех недостатков, которым обладал МИУ в классиче-
ском варианте. 

Высокие требования к исходной информации предъявляет и представ-
ление потенциала в виде ряда по шаровым функциям – данные должны 
быть известны по всей Земле и распределены равномерно. Кроме того, ря-
ды по шаровым функциям неспособны отражать локальные особенности 
гравитационного поля. Происходит некое глобальное усреднение тонко-
стей строения ГПЗ в отдельных районах. В результате модельные значе-
ния оказываются слишком заглаженными в горных районах и завышено 
иррегулярными над водными и равнинными поверхностями. Другие недо-
статки, указывающие на тот факт, что ряды по шаровым функциям не 
подходят для отображения тонкой структуры поля, описаны в параграфе 
1.2. Но для моделирования низких и средних частот этот аппарат приспо-
соблен очень хорошо, что, в частности, объясняет распространённость его 
использования при создании моделей ГПЗ. Ещё одно важнейшее свойство 
рядов по шаровым функциям состоит в том, что форма Земли и распреде-
ление масс внутри отражается только на значениях гармонических коэф-
фициентов разложения. Поэтому эти коэффициенты, называемые стоксо-
выми постоянными, служат важнейшими характеристиками Земли. 

Значимую роль в решении краевых задач физической геодезии играет 
метод, опирающийся на построение функций Грина. Тот факт, что функ-
ция Грина зависит только от формы краевой поверхности и решаемой кра-
евой задачи является несомненным преимуществом этого подхода. Каж-
дой замкнутой поверхности соответствует своя функция Грина для данной 
краевой задачи. И если она найдена, то данную краевую задачу можно 
решать независимо от полноты гравиметрической информации. Но по-
строение функции Грина является очень сложной задачей для поверхно-
стей, отличающихся от сферы. Даже для эллипсоида функция Грина имеет 
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очень сложную структуру. Тем не менее тот факт, что построение функ-
ции Грина позволяет получить точное решение задачи без необходимости 
прибегать к итерационным процедурам, делает этот подход привлекатель-
ным. В геодезической литературе много работ, направленных на построе-
ние функции Грина для решения той или иной краевой задачи геодезии,  
в основном, на эллипсоиде [21, 22, 24–26]. В работе [28] построена функ-
ция Грина для градиентометрических краевых задач на средне орбиталь-
ной сфере. 

Таким образом, нельзя утверждать, что классические методы устарели  
и не способны эффективно решать задачи физической геодезии в условиях 
современных реалий. Дело в том, что изменения происходят не только в гео-
дезической науке, в результате которых повышается точность измери-
тельной информации, улучшается покрытие ею поверхности Земли и око-
лоземного пространства, повышаются требования к точности определения 
потенциала и его трансформант. Изменения происходят также и в матема-
тике. И эти изменения приводят, с одной стороны, к появлению новых ме-
тодов решения задач геодезии, с другой стороны, к развитию и обогаще-
нию уже имеющихся. Можно дать естественную рекомендацию выбирать 
для решения конкретной задачи тот метод – классический или современ-
ный – который позволит получить наиболее точное её решение, наиболее 
полно используя имеющуюся исходную информацию. При этом, конечно 
же, необходимо учитывать достоинства и недостатки каждого из этих ме-
тодов, которых мы, в какой-то мере, попытались коснуться выше. 

Но, какой бы метод решения краевой задачи геодезии ни использовал-
ся, важнейшее значение имеют теоремы существования, единственности  
и устойчивости решения. Они служат тем теоретическим базисом, на ко-
торый опираются все практические методы. Реализация на практике всех 
рассмотренных подходов, как, впрочем, и тех, которые здесь не были 
охвачены, предполагает привлечение тех или иных вычислительных про-
цедур. При этом очень важно знать, что решение не только существует, но 
и единственно и устойчиво к малым изменениям в исходных данных. 

Доказательство таких теорем, в общем случае, является достаточно 
сложной задачей. Этим объясняется, видимо, тот факт, что для классиче-
ской нелинейной задачи Молоденского первое строгое доказательство 
теоремы существования и единственности было получено только  
в 1975 году. Автором этой работы был Хёрмандер [38]. Требования  
к гладкости поверхности Земли и к малости отличия искомого потенциала 
от нормального практически оказались не выполнимыми. Но работа Хёр-
мандера показала принципиальную возможность доказательства такой 
теоремы. Сложность обусловлена тем, что задача Молоденского пред-
ставляет собой краевую задачу со свободной границей. Сансо удалось 
преобразовать её в задачу с фиксированной границей в рамках концепции 
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гравитационного пространства [40, 41]. Этот подход позволил ослабить 
требования гладкости, предъявляемые в теореме Хёрмандера. Но они по-
прежнему оставались далёкими от реальности. Пожалуй, на данный мо-
мент самый значительный результат для нелинейных краевых задач пред-
ставлен теоремой, доказывающей существование и единственность реше-
ния нелинейной скалярной краевой задачи при условии, что центробежная 
компонента потенциала рассматривается как возмущение [45, 46]. Тогда 
на исходные данные, а именно, силу тяжести g  и потенциал W  наклады-
ваются естественные ограничения гладкости. Эти ограничения состоят  
в том, что g H ε∈ , то есть классу функций, промежуточных между не-

прерывными и непрерывно дифференцируемыми, а 1W H +ε∈  – про-
странству непрерывно дифференцируемых функций, производные кото-
рых удовлетворяют условию Гёльдера. 

За последнее время было сформулировано большое количество новых 
постановок краевой задачи геодезии, связанных с появлением новой изме-
рительной информации, в основном, благодаря развитию космического 
сектора. Особо необходимо выделить краевую задачу с фиксированной 
границей, в которой предполагается, что поверхность Земли известна и на 
ней заданы значения чистых аномалий силы тяжести, а искомой функцией 
является, как обычно, внешний потенциал Земли. Возможно, что, в связи  
с этим, постепенно отпадёт необходимость в использовании теллуроида, 
как вспомогательной поверхности. Теллуроид, с одной стороны, играет 
роль главной части неизвестной земной поверхности при линеаризации 
краевой задачи. С другой стороны, он позволяет избегать редуцирования 
измерений на геоид, что приводит к необходимости строить гипотезы от-
носительно плотности распределения масс внутри Земли. Теперь поверх-
ность Земли можно считать известной и отпадает практическая необходи-
мость в выделении её «дифференциала». Также постепенно отпадает 
необходимость в редуцировании измерений, поскольку теперь мы можем 
вычислить нормальную силу тяжести непосредственно в тех точках зем-
ной поверхности, в которых у нас имеются измеренные значения реальной 
силы тяжести. Если возмущающий потенциал удалось найти, то легко вы-
числить высоты геоида и, тем самым, определить поверхность геоида. Но 
теоретическое значение теллуроида, по-видимому, будет сохраняться при 
линеаризации задач и последующей постановке теорем существования  
и единственности. 

Для задачи с фиксрованной границей в линейной постановке доказана 
теорема о существовании единственного и устойчивого решения при есте-
ственных ограничениях на исходные данные [44]. Предполагается, что чи-
стые аномалии силы тяжести принадлежат гильбертову пространству 
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0
2H L= , а известная поверхность Земли имеет почти звёздную форму 

(допускаются наклоны земной поверхности до 89,6°!). Этот замечатель-
ный результат особенно ценен, если учесть, что задача с фиксированной 
границей, по-видимому, представляет наибольший интерес в современных 
условиях. 
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2. АНАЛИЗ СОВРЕМЕННЫХ ПОДХОДОВ К ПРЕДСТАВЛЕНИЮ 
ГРАВИТАЦИОННОГО ПОЛЯ ЗЕМЛИ, ВКЛЮЧАЯ: КОЛЛОКАЦИЮ 

(СТАТИСТИЧЕСКИЙ И ФУНКЦИОНАЛЬНЫЙ ПОДХОДЫ),  
ВАРИАЦИОННЫЙ МЕТОД РЕГУЛЯРИЗАЦИИ, МЕТОД  

ОПТИМАЛЬНЫХ ИНТЕГРАЛЬНЫХ ЯДЕР, МУЛЬТИПОЛЬНОЕ 
ПРЕДСТАВЛЕНИЕ ПОТЕНЦИАЛА, МЕТОД ЛИНЕЙНЫХ  

И СФЕРИЧЕСКИХ ДИСКРЕТНЫХ ПРЕОБРАЗОВАНИЙ, МЕТОД  
РАЗНОМАСШТАБНОЙ АППРОКСИМАЦИИ ГЕОПОТЕНЦИАЛА  

И ДРУГИЕ АЛЬТЕРНАТИВНЫЕ МЕТОДЫ 

2.1. Необходимые сведения  
о гильбертовых пространствах c воспроизводящим ядром 

Основным объектом данной главы является класс задач, связанных, 
вообще говоря, с «восстановлением» непрерывных функций по результа-
там дискретных измерений различных «проявлений» этих функций – 
например, с определением геопотенциала по результатам измерений в от-
дельных точках величин силы тяжести. Такая целенаправленность про-
диктована насущными потребностями разделов геодезии, непосредствен-
но связанных с решением ее основной задачи – определением в единой 
системе координат поверхности Земли и ее внешнего гравитационного 
поля. Дело в том, что и искомая физическая поверхность Земли, и иско-
мый потенциал силы тяжести представляют собой, с математической точ-
ки зрения, некоторые функции (причем чрезвычайно сложной структуры) 
и не могут быть в принципе описаны величинами дискретными. Анало-
гичная ситуация имеет место в целом ряде задач космической геодезии, 
фотограмметрии и других дисциплин. В то же время, исходные измерения 
по-прежнему содержат то или иное дискретное множество чисел. При 
этом одной из труднейших задач всегда считалась разработка алгоритмов, 
позволяющих совместно обрабатывать разнородные измерения, получен-
ные геодезией геометрической (углы и линии), физической (аномалия си-
лы тяжести), космической (например, результаты допплеровского слеже-
ния за спутниками), а также геодезической астрономией (широты, долго-
ты, азимуты). Для решения подобных проблем желательно, прежде всего, 
попытаться взглянуть на всевозможные геодезические измерения с неких 
единых и потому достаточно абстрактных позиций. Именно это и позво-
ляет сделать функциональный подход к обработке разнородной геодези-
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ческой информации, которого мы и будем придерживаться. При этом ре-
зультаты всевозможных геодезических измерений трактуются как (отяго-
щенные неизбежными ошибками) значения функционалов на геопотенци-
але Земли. 

Поскольку гравитационный потенциал Земли является функцией гар-
монической, то важную роль в постановке задач физической геодезии иг-
рает гильбертово пространство H множества функций, регулярных на 
бесконечности и гармонических во внешнем пространстве относительно 
некоторой сферы, целиком расположенной в теле Земли. При этом центр 
этой сферы совпадает с началом используемой квазигеоцентрической си-
стемы координат. В литературе такую сферу называют сферой Бьерхам-
мара (Bjerhammar) [1]. Известно, что потенциал реальной Земли не при-
надлежит такому пространству, но может быть аппроксимирован функци-
ями из ,H  как угодно, точно. Основанием для такого утверждения служит 
известная теорема Рунге-Крарупа [2, с. 55] [3, с. 56], о том, что множество 

0X  является всюду плотным подмножеством множества X . Здесь 0X  – 
множество функций, регулярных на бесконечности и гармонических во 
внешнем относительно сферы Бьерхаммара пространстве, а X – множе-
ство функций, регулярных на бесконечности и гармонических во внешнем 
относительно теллуроида пространстве. 

В общем случае, под гильбертовым пространством Н  будем пони-
мать, как обычно, множество ( )2

RL Ω  упомянутых гармонических функ-

ций, квадратично интегрируемых на сфере RΩ  радиуса R со скалярным 
произведением 

 

 ( ) ( )2, ( ) ( )
R

R
RLF G F A G A dΩ

Ω
= Ω∫ ,                           (2.1) 

 

для любых двух функций 2, ( )RF G L∈ Ω и соответствующей нормой 

( ) ( )22 ( , )
RR LLF F F ΩΩ = . 

 

Для дальнейшего изложения особое значение имеет специальный тип 
гильбертовых пространств, нашедших плодотворное приложение в геоде-
зии. Это так называемые гильбертовы пространства с воспроизводящим 
ядром (далее в. я.). 

Пусть H – гильбертово пространство функций, определенных на 
множестве D . Функция ( , )K A B , где A и B – произвольные точки D , 
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называется воспроизводящим ядром гильбертова пространства H , если 
( , )K A B  обладает двумя свойствами: 
если B  – любая фиксированная точка D , то ( , )K A B  как функция точ-

ки A  принадлежит H , то есть 
 

 ( , )K A B H∈ ;                                            (2.2) 
 

значение любой функции f H∈ в произвольной точке B D∈  равно 
 

 ( ) ( ( ), ( , ))A
Hf B f A K A B= .                                 (2.3) 

 

Здесь верхний индекс A  говорит о том, что операция скалярного про-
изведения применяется к элементам f и ( , )K B⋅  как к функциям точки 
A D∈ . 

Видно, что функции, заполняющие H с в. я. ( , )K A B , ограничены  
в каждой точке B области своего определения D . В частности, является 
конечным число ( , )K B B  при B D∀ ∈ . 

Для геодезических приложений наибольший интерес представляет по-
нятие линейных функционалов на H . Поэтому мы приведем здесь соот-
ветствующие справочные сведения. 

Правило L , согласно которому каждому элементу f H∈ поставлено  
в соответствие одно и только одно число Lf , называется функционалом, 
определенным на H . 

Пусть, например,  D  – сфера какого-нибудь радиуса, а ( )C D обознача-
ет множество всех непрерывных функций на D . Функционалами, опреде-
ленными на ( )C D , в частности, являются: 

– поверхностный интеграл; 
– коэффициенты Фурье разложения по ортогональной системе сфериче-

ских функций. 
Функционал называется линейным, если для любых 1f   и 2f  из H   

и любых действительных чисел 1α  и 2α  справедливо равенство: 
 

1 1 2 2 1 1 2 2(α α ) α αL f f Lf Lf⋅ + ⋅ = ⋅ + ⋅ .                           (2.4) 
 

Например, зафиксируем произвольный элемент ( )A HΨ ∈ . Линейный 
функционал на H можно определить так: 

 

 ( , )HLf f= Ψ .                                        (2.5) 
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Функционал L , определенный на H , называется ограниченным, если 
при любом элементе f H∈ имеет место неравенство: 

 

 Lf C f⋅ , где const 0C =  .                            (2.6) 
 

Наименьшее из чисел C , удовлетворяющих неравенству (2.6), называ-
ется нормой ограниченного функционала и обозначается L . Таким об-
разом, 

 

 Lf L f⋅ ,                                            (2.7) 
 

причем L  нельзя заменить меньшим числом. 
Например, функционал (2.7) ограничен, так как, согласно известному 

неравенству Буняковского–Коши 
 

 ( , ) ( , ) ( , )H H Hf f f fΨ Ψ Ψ ⋅ = Ψ ⋅ .                    (2.8) 
 

Неравенство (2.8) справедливо при любом f H∈  и при f = Ψ обра-
щается в равенство. Значит, L = Ψ . 

Функционал L , определенный на H , называется непрерывным, если 
из условия nf f→  следует сходимость последовательности 1( )n nLf ∞

=   
к числу Lf . 

Определённое самостоятельное значение имеет множество всех ли-
нейных ограниченных функционалов, определенных на H . Будем обо-
значать это множество H ∗ . 

Можно доказать, что: 
– всякий линейный ограниченный на H  функционал L  непрерывен; 
– H ∗  – векторное пространство. 
Векторное пространство H ∗  представляет особый интерес для геоде-

зии, поскольку практически все объекты геодезических измерений можно 
трактовать как линейные (или линеаризованные) функционалы на геопо-
тенциале как на некотором элементе определённого гильбертова про-
странства. 

В самом деле, пусть Y  – истинное значение какой-либо величины, яв-
ляющейся объектом измерений в геодезии геометрической, физической, 
космической или геодезической астрономии – неважно. Это значение все-
гда зависит от координат одной или нескольких точек, расположенных на 
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земной поверхности или вне ее, и от потенциала W  силы тяжести Земли. 
Таким образом, 

 

 ( , )Y F X W= .                                          (2.9) 
 

Здесь nX E∈ – вектор-столбец  n параметров, состоящий, например, из 
координат точек, от которых зависит Y , или содержащий какие-либо не-
известные числа, скажем, смещение системы координат или параметры ее 
ориентировки; nE  – n-мерное евклидово пространство; W G∈ , где G  – 
некоторое заранее оговоренное гильбертово пространство; F  – функцио-
нал, в общем случае нелинейный, отображающий произведение 1  про-
странств nE G×  в множество действительных чисел 1E , то есть 

 

 1: nF E G E× ⇒ .                                       (2.10) 
 

Другими словами, F  – это некоторое правило, согласно котором каж-
дой паре элементов, один из которых берется из nE , а другой – из G , 
можно поставить в соответствие одно действительное число.  

Рассмотрим некоторые примеры. Не будем только пока конкретизиро-
вать то гильбертово пространство G , одним из элементов которого явля-
ется потенциал W . Дело в том, что главной частью W  является известный 
нормальный потенциал U , а неизвестен лишь возмущающий потенциал 
T W U= − . Поэтому практический интерес представляют те гильбертовы 
пространства H , которые содержат T . 

Одним из основных объектов измерений физической геодезии является 
величина g  силы тяжести, представляющая, по определению, следующий 
оператор от потенциала: 

 

 2 2 2( ) gradW x y zg g W g W W W= = = = + +
 .               (2.11) 

 

Здесь , ,x y zW W W  – частные производные W  по , ,x y z  соответствен-

но.  

 
1 Пусть U и V – два пространства. Элементами произведения U × V служат все упорядочен-

ные пары (u,v), где u ∈ U, v ∈ V . Например, двумерная плоскость E2 = E1 × E1, где E1 – ось всех дей-

ствительных чисел, т. к. точка (x,y) ∈ E2, если x ∈ E1, y ∈ E1 (поэтому произведение пространств 

называют также декартовым произведением). 
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Измеряемое значение величины силы тяжести в заданной точке P  есть 
значение соответствующего дельта-функционала δP  от g : 

 

 ( ) ( )( )δ δP PY g g W= = .                              (2.12) 
 

Таким образом, Y  зависит от трех координат точки P  и функции W , 
что согласуется с представлением (2.9). Одним из основных объектов из-
мерений геодезической астрономии являются астрономические широты 
φ  и астрономические долготы λ , которые можно связать с потенциалом 
W  следующим образом: 

 

 
2 2

φ φ( ) arctg , λ λ( ) arctg yz

xx y

WWW W
WW W

−
= = = =

+

.             (2.13) 

 

Измеряемые значения астрономических широты и долготы в задан-
ной точке P  есть значение соответствующего дельта-функционала δP  

от φ  и λ : 
 

 ( )δ (φ) δ (φ )P PY W= =  или ( )δ (λ) δ (λ )P PY W= = .          (2.14) 
 

Таким образом, Y  зависит от трех координат точки P  и функции W , 
что согласуется с представлением (2.9). 

Другие примеры геодезических функционалов и методы их линеариза-
ции описаны в работах [2, 4, 5]. 

Следующая замечательная теорема, принадлежащая Ф. Риссу, полно-
стью характеризует пространство функционалов H ∗ . 

Теорема Рисса: Пространство H ∗  является гильбертовым про-
странством, изометрично изоморфным пространству H . Это значит, 
что для всякого линейного ограниченного функционала L H ∗∈ существу-
ет единственный элемент L HΨ ∈  такой, что при f H∀ ∈ справедливо 
равенство: 

 

 ( , )LLf f= Ψ ,                                        (2.15) 
 

причем 
 

 LH HL ∗ = Ψ .                                      (2.16) 
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Таким образом, значение любого линейного ограниченного функцио-
нала L  на каждом элементе f H∈  можно представить в виде скалярного 
произведения этого элемента f  и некоторого другого элемента L HΨ ∈ , 
зависящего от L  и играющего роль определённого представителя L . 
Ниже будет указан элегантный способ вычисления элемента LΨ , что при-
водит к универсальному способу вычисления значений любого линейного 
функционала L . 

Формула (2.16) также очень важна для геодезических приложений, по-
скольку определяет смысл точностных расчетов. 

Гильбертово пространство H ∗  называется сопряженным данному гиль-
бертову пространству H . Элемент L HΨ ∈ , однозначно определяющий 
линейный ограниченный функционал L H ∗∈ , называется элементом, со-
пряженным данному функционалу L , или представителем функционала L . 

В гильбертовом пространстве H ∗ , элементами которого являются ли-
нейные ограниченные функционалы, заданные на H , определена опера-
ция скалярного произведения ( )1 2,L L ∗  для каждой пары 1 2,L L H ∗∈ . Дей-
ствительно, в силу вытекающего из теоремы Ф. Рисса изометричного изо-
морфизма между H  и H ∗ , скалярное произведение функционалов в H ∗  

можно вычислить как скалярное произведение их представителей в H  
следующим образом: 

 

 ( ) ( )1 21 2, ,L L H
L L ∗ = Ψ Ψ ,                               (2.17) 

 

где 
1 2
,L LΨ Ψ – элементы из H , сопряженные функционалам 1 2,L L H ∗∈ . 

В результате для пространства H ∗  справедливы все понятия гильбер-
товых пространств. В частности, символом { }1 2Span , ,... nL L L  мы будем 
обозначать пространство, натянутое на линейно-независимые функциона-
лы ( )1 2, ,..., nL L L H ∗∈ . 

Заметим, что теорема Рисса остается справедливой и для любых ко-
нечномерных евклидовых пространств в силу полноты последних. 

Пусть H – гильбертово пространство функций, определенных в какой-
нибудь области D , а B D∈  – какая-нибудь точка области. Дельта функ-
ционалом называется функционал δB , значение которого δB f  на любой 
функции f H∈  равно значению этой функции в точке B : 
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 δ ( )B f f B= .                                           (2.18) 
 

Отметим, что этот простейший функционал, строго говоря, определён 
не на всяком гильбертовом пространстве. Например, функции, заполняю-
щие обычное гильбертово пространство 2 ( )L D , могут быть не определены 
на множествах нулевой меры. 

Однако, из формул (2.3), (2.15), (2.18) следует, что: 
в H  с воспроизводящим ядром ( , )K A B  определен функционал δB  при 

B D∀ ∈ ; 
если δB H ∗∈ , то функция ( , )K A B  является сопряженным элементом 

функционалу δB . 

Между условием δB H ∗∈  и существованием в H  воспроизводящее 
ядро ( , )K A B  имеется взаимосвязь. Она выявляется следующей теоремой. 

Теорема 1. Для того, чтобы H  имело воспроизводящее ядро ( , )K A B , 

необходимо и достаточно, чтобы δB H ∗∈  для B D∀ ∈ . 
Следующие теоремы раскрывают детальные свойства гильбертовых 

пространств с в. я и часто необходимы в приложениях: 
– пусть ( ){ } 1i i

e A ∞

=
 – ортонормированный базис пространства H , в ко-

тором существует воспроизводящее ядро ( , )K A B . Тогда для любых точек 
,A B D∈  

 

 ( )
1

( , ) ( )i i
i

K A B e A e B
∞

=
= ⋅∑ ;                              (2.19) 

 

– если в H  существует воспроизводящее ядро ( , )K A B , то оно един-
ственно; 

– если в H  существует воспроизводящее ядро ( , )K A B , то операция 
равенства элементов из H  влечет за собой поточечное равенство; 

– пусть ( , )K A B  – воспроизводящее ядро гильбертова пространства H  

и { } 1
n

i iB =
 – совокупность n  точек из D . Тогда при любом наборе дей-

ствительных чисел ( )1 2α ,α ,...αn , одновременно неравных нулю, имеет 
место неравенство 
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1 1

α ( , )α 0
n n

i i j j
i j

K B B
= =
∑ ∑  ,                               (2.20) 

 

то есть воспроизводящее ядро является функцией положительно опреде-
лённой; 

– пусть гильбертово пространство H , имеющее воспроизводящее ядро 

( , )K A B , разложено в прямую сумму подпространств 1H  и 1H ⊥ : 
 

 1 1H H H ⊥= ⊕ ,                                        (2.21) 
тогда 

 

 1 1( , ) ( , ) ( , )K A B K A B K A B⊥= + ,                          (2.22) 
 

где 1( , )K A B  – воспроизводящее ядро подпространства 1H ; 

 1 ( , )K A B⊥  – воспроизводящее ядро подпространства 1H ⊥ ; 
– из разложения (2.21) следует, что f H∀ ∈  однозначно представим  

в виде суммы: 
 

 1 1( ) ( ) ( )f B f B f B⊥= + ,                                 (2.23) 
 

где 1 1 1 1,f H f H⊥ ⊥∈ ∈ .  Функция 1( )f B  может быть найдена по формуле: 
 

 ( )( )1 1( ) , ( , ) A
H

f B f A K A B= ;                           (2.24) 
 

– пусть в H  существует воспроизводящее ядро ( , )K A B  и L  – про-

извольный функционал из H ∗ . Тогда представитель этого функционала 
 

 ( ) ( , )L BA L K A BΨ = ,                                  (2.25) 
 

что позволяет получить элемент ( )L B HΨ ∈ , сопряженный любому ли-

нейному ограниченному функционалу L H ∗∈ . В правой части (2.25) L
действует на ( , )K A B  как на функцию точки B D∈ . Для простоты будем 
обозначать ( , ) ( , )BL K A B K A L= ; 

– особо отметим выражение для квадрата нормы функционала. Для 
этого обозначим ( , )K L L результат действия на воспроизводящее ядро 
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( , )K A B  функционалом L  сначала как на функцию B , а затем как на 
функцию точки A , то есть 

 

 ( , ) ( , )A BK L L L L K A B= ⋅ .                             (2.26) 
 

Тогда 
 

 2 2 ( , )LH HL K L L∗ = Ψ = ,                            (2.27) 
 

то есть норма функционала в H ∗  равна норме его представителя в ,H  см. 
(2.16).  В самом деле, 

 
2 ( ( , ), ( , ) ( ( , ), ( , ))

( ( , ), ( , )) ( , ) ( , );

A A
L H B B HH

A
B B H B B

K A L K A L L K A B L K A B

L L K A B K A B L L K B B K L L

Ψ = = =

= ⋅ = ⋅ =  
 

– пусть 1 2,L L – произвольные элементы из H ∗ , тогда 
 

 
1 21 2 1 2 1 2( , ) ( , ) ( , ) ( , )L LL L L L K A B K L L∗ = Ψ Ψ = ⋅ = ,           (2.28) 

 
где 1 2( , )K L L  – результаты действия на воспроизводящее ядро ( , )K A B  
сначала функционалом 2L  как на функцию второго аргумента, а затем 
функционалом 1L  как на функцию первого аргумента. Тем самым получен 
удобный для практики метод вычисления скалярного произведения  
в гильбертовом пространстве H ∗ . 

Доказательства приведенных теорем и примеры их использования 
можно найти, например, в работах [5, 6]. 

2.2. Критический анализ традиционного моделирования  
ГПЗ рядами Фурье по шаровым функциям 

Для моделирования глобального гравитационного поля Земли (ГПЗ)  
в геодезии обычно используются ряды по шаровым функциям вида 

 
1

2 0
( ,θ,λ) ( cos λ sin λ) (cosθ)

n n
nm nm nm

n m

RF r c m s m P
r

+∞

= =

 = + 
 

∑ ∑ ,     (2.29) 

 

где F – изучаемая функция (полезный сигнал);  
R  – отсчетный радиус; 
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,θ,λr  – сферические координаты, причём >r R ; 
(cosθ)nmP   – полностью нормированные присоединенные функции 

Лежандра; 

nmc  и nms   – гармонические коэффициенты n-ой степени и m-го порядка. 
Практически ряды всегда ограничены. Так, например, для возмущаю-

щего потенциала T V U= −  (то есть, для результата вычитания из реаль-
ного потенциала V  его референцного значения U ) имеем: 

 
1

2 0
( ,θ,λ) ( cos λ sin λ) (cosθ)

nN n
nm nm nm

n m

GM RT r c m s m P
R r

+

= =

 = + = 
 

∑ ∑
 

 

 
1 1

2 2
( (θ,λ) (θ,λ)

n nN n N
nm nm n

n m n n

GM R GM Ra Y Y
R r R r

+ +

= =− =

   = =   
   

∑ ∑ ∑ ,     (2.30) 

 

где G  – гравитационная постоянная;  
M  – масса Земли;  
N  – наибольшая степень разложения; гармоники 

 

 cos λ (cosθ), 0,..., ;
sin λ (cosθ), ,..., 1;

nm nm
nm nm

n m n m

c m P m n
a Y s m P m n

⋅ ==  ⋅ = − −          

 (2.31) 

 

где (θ,λ)nmY  – сферическая функция n-ой степени и m-го порядка; 

 nmc  и nms , или nma  – соответствующие гармонические коэффици-
енты, представляющие собой коэффициенты Фурье возмущающего по-
тенциала на сфере RΩ  радиуса R , или на единичной сфере Ω , 

 

2
1 1(θ,λ) (θ,λ) (θ,λ) (θ,λ)

44 R
nm nm R nma T Y d T Y d

R Ω Ω
= Ω = Ω

ππ
∫ ∫ .   (2.32) 

 

Член ( ) 1/ lR r +  отражает затухание поля с высотой. Поэтому дости-
жимое значение N  при моделировании гравитационного поля по резуль-
татам спутниковых измерений существенно зависит не только от точност-
ных возможностей аппаратуры, но и от высоты полёта. Так, например,  
в известном европейском проекте CHAMP (система высокий спутник – 
низкий спутник) приемлемое значение N  приближённо находится между 
50 и 70, а для другого европейского проекта – GRACE (система низкий 
спутник – низкий спутник) – расположено между 100 и 150. 
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Указанные шаровые функции составляют ортогональный базис гиль-
бертова пространства H  функций, регулярных на бесконечности и гар-
монических во внешнем пространстве относительно сферы Бьерхаммара 
(Bjerhammar), см. [1]. Ранее уже отмечалось, что реальный потенциал T  
не принадлежит такому пространству, но, согласно известной теореме 
Рунге-Крарупа [3, с. 56], [2, с. 55], может быть аппроксимирован функци-
ями из H  как угодно точно. 

Сферические координаты связаны с прямоугольными координатами 

1 2 3( , , )Tx x x=x  геоцентрической системы соотношением 
 

[ ]sin θcos λ,sin θsin λ,cosθ T
rr re= = =x r  ,            (2.33) 

 

где r re = e

 – единичный вектор, направленный к точке x , r = x . 
Сферические функции ортогональны, так что 

 

 
, ,( ) ( ) 4 δ δnm kl n k m lY Y d

Ω
Ω = π∫ x x ,                           (2.34) 

 

где  
 

,
1 если 

sin θ θ λ, δ
0 если n k

k = n
d d d

k n


Ω = =  ≠
. 

 

При этом 
 

 2
2 2

( )
0

( )nL
n

F F
∞

Ω
=

= σ∑ ,                                  (2.35) 

 

где 2 2
,( )

n
n n m

m n
F a

=−
σ = ∑  – степенные дисперсии. 

Следующие важные для дальнейшего соотношения составляют содер-
жание теоремы сложения сферических функций и формулу Функа-Хеке 
(Funk-Hecke), соответственно: 

 

4( ) ( ) ( ) ( ) ( )
2 1p q p q

nT
n r r n r r n nm p nm q

m n
P e e P P v Y Y

n =−

π
= = =

+
∑e e x x  ,   (2.36) 

 

 
1

1
( ) ( ) ( ), 2 ( ) ( )n p n n q n nK v Y d k Y k K v P v dv

Ω −
Ω = = π∫ ∫x x ,          (2.37) 
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где cos ψv = , ψ  − сферическое расстояние между точками с координа-

тами px  и qx . Пользуясь этими соотношениями, можно, в частности, 

убедиться, что [7, с. 9] 
 

 
0

2 1( ) ( )
4 n n

n

nK v k P v
∞

=

+
=

π
∑ .                               (2.38) 

 

В настоящее время построены сотни рядов, подобных (2.29), различа-
ющихся точностью своих коэффициентов и длиной разложения, то есть 
наибольшей степенью N  присутствующих коэффициентов. Поскольку 
N  всегда конечно, то представление ГПЗ моделью (2.29) равносильно 
определённой низкочастотной фильтрацией, а наибольшая степень N  
определяет пространственное разрешение на поверхности Земли (разре-
шающая способность модели). Наименьшая полуволна ψ  (как сфериче-

ское расстояние), которую можно выделить с помощью ( )21N +  гармони-
ческих коэффициентов ряда (2.29), в простейшем случае определяется 
формулой, основанной на количестве нулей на экваторе: 

 

 ( ) RN
N
π

ψ = ,                                            (2.39) 

 

где R  – средний радиус Земли.  
Несколько более адекватное представление о разрешающей способности 

даёт диаметр той части земной сферы ( )224 / 1R Nπ + , которая приходится  
в среднем на один коэффициент ряда, то есть (как сферическое расстояние) 

 

 1ψ( ) 4 arcsin
1

N
N

= ⋅
+

.                                  (2.40) 

 
В таблице 2.1 указаны соотношения между наивысшей степенью раз-

ложения ,N  разрешающей способностью ψ  по версии (2.40) и соответ-

ствующие ошибки усечения , , ,gζ ∆ ξ η   аномалии  высоты ζ , аномалии 

силы тяжести g∆ , уклонений отвесной линии ,ξ η (вычислены по модели 
Чернинга-Раппа [8]). 
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Таблица 2.1 
Зависимость разрешающей способности ψ  модели и ошибок усечения  

аномалии высоты ζ , аномалии силы тяжести g∆ , уклонений отвесной линии 
,ξ η от наивысшей степени разложения N  

N  ( )21N +  ψ  ψ  (км) ζε (м) g∆ε  (мГал) ,ξ ηε (дуг. cек.) 

360 130 321 0,635 70,540 0,228 25,27 3,76 
720 519 841 0,318 35,283 0,103 20,12 3,00 

1 440 2 076 481 0,159 17,654 0,042 14,54 2,16 
1 800 3 243 601 0,127 14,125 0,030 12,68 1,89 
3 600 12 967 201 0,064 7,065 0,010 7,12 1,06 
5 400 29 170 801 0,042 4,710 0,004 4,34 0,65 
7 200 51 854 401 0,032 3,533 0,002 2,74 0,41 
Видно, что скорость сходимости ряда медленная, и достижение разре-

шающей способности в несколько километров требует таких высоких сте-
пеней разложения, которые в рамках теории сферических функций прак-
тически не достижимы по следующим причинам [9–11]: 

– для разложения в ряд по сферическим функциям до наивысшей сте-
пени N , строго говоря, надо решать систему 2( 1)N +  уравнений с 2( 1)N +  
неизвестными, матрица коэффициентов которой полностью заполнена  
и плохо обусловлена. Например, для получения ряда до 2160-ой степени 
необходимо преодолеть вычислительные трудности для устойчивого оце-
нивания около 4 700 000 коэффициентов; 

– гармонические коэффициенты не связаны с какой-либо индивиду-
альной пространственной локализацией. Каждый коэффициент отражает 
влияние всего ГПЗ, и наоборот – изменение даже одного коэффициента 
имеет глобальный эффект. При вычислении значения суммы полученного 
ряда в одной единственной точке необходимо всегда привлекать все мно-
гочисленные коэффициенты одновременно; 

– аппроксимация достигается осциллирующими гармониками за счёт 
сетчатого взаимопогашения, но получаемый спектральный состав не соче-
тается со сложностью или, наоборот, гладкостью отдельных участков. Ря-
ды Фурье, каковыми и являются ряды по сферическим функциям, способ-
ны отражать разнородности локального поля лишь в среднем по планете, 
что приводит к излишнему сглаживанию модельных значений ГПЗ в горах 
и, наоборот, к неоправданно иррегулярным результатам в равнинных рай-
онах и на океанах; 

– тот факт, что исходные данные отдельных регионов точнее других, 
обычно компенсируется взвешенным уравниванием, результат которого 
приводит опять-таки к глобальному эффекту: разрешающая способность 
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получается одинаковой для всей планеты. Имеется всего лишь один пара-
метр, позволяющий изменять разрешающую способность, – наивысшая 
степень разложения N . Поэтому нет возможности извлечь выгоду из вы-
сокоточных данных отдельных регионов, и реальная разрешающая спо-
собность окончательной модели диктуется, по существу, регионами, в ко-
торых данные имеют низкую точность или вовсе отсутствуют. Сбаланси-
ровать неизбежные различия одним параметром N  невозможно; 

– ряды по сферическим функциям хорошо приспособлены для модели-
рования стационарного (то есть достаточно однородного по простран-
ству) поля, но очень медленно сходятся при попытках отражать детали 
поля нестационарного. Глобальный характер базиса в виде сферических 
функций и обусловленная этим медленная сходимость при моделировании 
нестационарного ГПЗ делает очень сомнительным достижение традици-
онными методами реально высокой разрешающей способности модели; 

– исходные данные для вычисления гармонических коэффициентов 
должны быть известны по всей планете, причём распределены равномер-
но. Это вынуждает привлекать мало обоснованные гипотезы и разного ро-
да методы заполнения «белых пятен». 

Таким образом, каждая сферическая функция характеризуется вполне 
определёнными показателями степени n  и порядка m  и, следовательно, 
имеет однозначные спектральные характеристики. В этом смысле каждая 
сферическая функция идеально локализована в частотной области. Однако 
в пространственной области любая сферическая функция, будучи сужен-
ным на сферу полиномом трёх переменных, всегда определена на всей сфере, 
и в этом смысле не имеет пространственной локализации [10]. Таким обра-
зом, сферические функции идеально локализованы в частотной области, но 
не локализованы в пространстве. Этот очевидный факт имеет серьёзные по-
следствия. Так, при моделировании, например, геопотенциала необходимо 
иметь исходные данные тоже по всей Земле и при том равномерно вне зави-
симости от того, хорошо ли изучен тот или иной регион или не изучен вовсе. 
Отклонение от этого требования в одном локальном районе отрицательно 
отражается на всех гармонических коэффициентах. Реальную разрешающую 
способность окончательной модели в результате диктуют регионы, в кото-
рых данные имеют низкую точность или вовсе отсутствуют. 

Заметим, что прямо противоположными свойствами обладает обоб-
щённая δ-функция Дирака. Она отлична от нуля в единственной точке, то 
есть идеально локализована в пространстве, но её спектр, как известно, 
«равномерно размазан» по всей частотной области. Построить базисные 
функции, обеспечивающие высокую локализацию одновременно и в про-
странстве, и в частотной области невозможно, поскольку с улучшени-
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ем локализации пространственной (частотной) ухудшается локализация 
частотная (пространственная). 

Поэтому в настоящее время для аппроксимации сигналов с перемен-
ным спектром – а именно такая ситуация и является наиболее распростра-
нённой на практике – рекомендуется пользоваться базисными функциями 
с промежуточными свойствами локализации, причём такими, степенью 
локализации которых можно управлять с помощью определённого пара-
метра. Следует принимать во внимание ожидаемый спектральный состав 
изучаемого сигнала (например, наземная или спутниковая гравиметрия)  
и детальность имеющихся исходных данных. Для описания длинных волн 
вполне уместно пользоваться сферическими функциями. Но для выявле-
ния локальных особенностей целесообразно пользоваться пространствен-
но-локализованными базисными функциями – чем мельче детали, которые 
требуется отразить, тем более высокая пространственная локализация же-
лательна. В связи с этим, представляется очень сомнительным продолжа-
ющееся стремление при моделировании ГПЗ достигать высокой разреша-
ющей способности с помощью обязательно единой модели. Ведь ГПЗ за-
ведомо пространственно-нестационарно и содержит регионы как с доста-
точно гладким потенциалом, так и с потенциалом, который резко изменя-
ется даже на небольших расстояниях. В работе [12] проанализированы бо-
лее миллиона точечных значений аномалии силы тяжести на расстояниях 
от 30 м до 11 км на территории Западной Австралии. В 39 трапециях  
5° × 5° были эмпирически вычислены ковариационные функции. Анализ 
результатов показал, что различия между дисперсиями в равнинных и 
горных районах достигают нескольких сотен мГал2, а радиус корреляции 
меняется от 0,5° до 1,4°. Изменение радиуса корреляции, как известно, 
напрямую связано с изменением спектрального состава поля: чем меньше 
радиус корреляции, тем большее преобладание высокочастотных состав-
ляющих имеет место, и наоборот. Итак, традиционная методика построе-
ния модели глобального ГПЗ претерпела в настоящее время определённые 
модификации. Основой этих модификаций является изменение базиса. 

Для отображения локальных особенностей поля необходимо привлекать 
новые базисные функции, отличающиеся от шаровых функций наличием 
пространственной локализации. При этом, конечно, не предполагается пол-
ный отказ от шаровых функций, которые достаточно хорошо проявляют 
себя при описании низко- и среднечастотной частей гравитационного поля 
Земли. Но для моделирования высокочастотного диапазона полезных сиг-
налов в настоящее время всё чаще используются пространственно-
локализованные базисные функции, которые обычно – вслед за геостати-
стикой – называются сферическими радиальными базисными функциями 
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(СРБФ) и вейвлетами (wavelet – короткая волна). Улучшение ситуации воз-
можно только на основе разномасштабных методов моделирования, пред-
полагающих разумное сочетание шаровых функций и вейвлет-анализа. 
Именно вейвлет-анализ позволяет не только реально отражать детали 
разнородного ГПЗ, но и реально локализовать местоположения различных 
амплитуд. Разумное сочетание традиционного ряда по шаровым функци-
ям для низкочастотной части модели с результатами вейвлет-анализа для 
её высокочастотной части позволяет заметно улучшить характеристики 
модели и, в частности, её разрешающую способность. 

2.3. Разномасштабное моделирование сигналов  
с помощью сферических радиальных  

базисных функций 

2.3.1. От сферических гармоник к сферическим  
масштабирующим функциям и линейным вейвлетам 

Пусть ( )f x  – произвольная функция, определённая на и вне сферы 

RΩ  радиуса R . Традиционную форму (2.29) гармонического анализа та-
кой функции, пользуясь (2.32) и (2.36), можно преобразовать к следующе-
му виду [13] 

 
1

0
( ) ( / )

nn
nm nm

n m n

Rf f Y r
r

+∞

= =−

 = = 
 

∑ ∑x x
 

 
1

0
( ) ( ) ( / )

nn
p nm p nm

n m n

R f Y d Y r
r

+∞

= =− Ω

 = Ω = 
 

∑ ∑ ∫ x x x
 

 
1

0
( ) ( ) ( / )

n n
p nm p nm

n m n

Rf Y Y r d
r

+∞

= =−Ω

 = Ω⇒ 
 

∑ ∑∫ x x x
            

(2.41) 

 
1

0

2 1( ) ( ) ( )
4

n

p n
n

n Rf f P v d
r

+∞

=Ω

+  = Ω = π  
∑∫x x

 
 

1

2
0

2 1( ) ( )
4R

n

p n R
n

n Rf P v d
rR

+∞

=Ω

+  = Ω 
π  

∑∫ x , 

 



 

103 

см. (2.19) и (2.36). Полученное подинтегральное выражение зависит толь-
ко от сферического расстояния между точкой вычисления с координатами 
x   и точкой интегрирования Rp∈Ω  с координатами px . Поэтому соот-

ветствующий интеграл представляет собой свёртку. В этой свёртке исход-
ная функция играет роль обкладки, а ядром служит выражение [14, c. 75] 
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которое на сфере совпадает с обобщённой δ-функцией Дирака. 
Таким образом, 
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R R
p p p pf K f d f d K f Ω

Ω Ω
= = δ = ∗∫ ∫x x x x x x x x ,  (2.43) 

 

и, следовательно, ядро (2.42) формально является воспроизводящим, см. 
(2.3), но роль воспроизводящего ядра играет обобщённая функция Дирака. 

Однако, такая функция не удовлетворяет требованиям, определяющим 
воспроизводяшее ядро и не позволяет считать H  гильбертовым про-
странством с воспроизводящим ядром. 

Чтобы исправить положение, рекомендуется ограничиться использо-
ванием только некоторого подпространства Hβ  пространства H , запол-

ненного только более гладкими функциями [15]. 
Множество Hβ  содержит только такие функции из H , высокочастот-

ные коэффициенты которых убывают быстрее, чем 1/2
nβ  при n →∞ , то 

есть высокочастотная часть этих функций определённым образом ограни-
чена. Здесь nβ  обозначает числовую неотрицательную убывающую бес-
конечно малую последовательность, которую можно называть показате-
лем гладкости множества Hβ . Задав на этом множестве скалярное про-

изведение и соответствующую норму 
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вводят пространство Соболева Hβ , получаемое замыканием описанного 

множества функций по указанной норме [16, с. 111]. 
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Таким образом, если функция f Hβ∈ , то её коэффициенты Фурье nkf
удовлетворяют условию (2.44). 

Если к тому же 1
n o

n
 β =  
 

, Hβ  то имеет воспроизводящее ядро вида 
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Ядро (2.45) является воспроизводящим только для пространства Hβ . 

Поскольку в исходном пространстве H  – это ядро, воспроизводящим не 
является, то введём для него новое обозначение 
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Свёртки любого сигнала из H  с ( , )pB x x  выполняют сглаживание  

и могут использоваться как определённые операторы фильтрации, где ко-
эффициенты nb  отражают частотные свойства этого оператора. 

Заметим, что (2.46) зависит только от сферического расстояния ψ
между точками x  и px , достигает максимума при ψ 0=  и, следователь-

но, является СРБФ [17]. 
Если 1nb =  для n∀ , то выражения (2.46) и (2.42) совпадают и с пози-

ции фильтрации полностью нейтральны, поскольку вход ( )f x  и выход 
( )f x  оператора свёртки совпадают. Задаваясь другими последовательно-

стями nb , обеспечивающими сходимость ряда (2.46), будем получать 
множество соответствующих СРБФ с различными свойствами (их назы-
вают последовательностями Дирака). Пользуясь формулой Фунта-Хеке 
(2.37), можно доказать, что сферические функции являются собственными 
функциями интегрального преобразования по сфере с ядром (2.46), а соб-
ственными числами служат члены последовательности показателя гладко-
сти nb . Следовательно, если на вход свёртки (2.43) подаётся сигнал с гар-
моническими коэффициентами nma , то преобразованный сигнал на выхо-

де имеет гармонические коэффициенты nm nmb a . Варьируя, таким обра-
зом, показателем гладкости, можно конструировать преобразования сиг-
нала с нужными фильтрующими и сглаживающими способностями.  
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Если, например, 0nb =  для n N∀ >  и 0nb ≠  для n N∀ < , то свёртка 
f H∀ ∈  с ядром (2.46) выполняет низкочастотную фильтрацию. Поэтому 

ясно, что легко организовать и полосовую фильтрацию, а выбор значений 
коэффициентов nb  позволяет обеспечить более детальные результаты 
фильтрации – усилить сигнал в определённой полосе частот или, наобо-
рот, некоторую спектральную полосу сигнала ослабить (или даже отсечь) 
и т. п. Последовательное применение низкочастотной фильтрации позво-
ляет разложить изучаемый сигнал на отдельные части разного масштаб-
ного уровня, соответствующие разным промежуткам спектра и, следова-
тельно, разным разрешающим способностям моделирования. В этом со-
стоит фундаментальная идея разномасштабного анализа с помощью 
СРБФ. Спецификация определённого масштаба обеспечивается специаль-
ным выбором коэффициентов nb  и количества слагаемых в ядре (2.46)  
в зависимости от нужного масштаба. 

Полагая, что точки P  и Q  могут располагаться на и вне сферы RΩ , 
перепишем (2.46) и (2.43) в виде 
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(2.47) 

 

и будем называть ядро ( , )j pB x x масштабирующим (сферической мас-

штабирующей функцией) масштаба 0,1,2...j = . 
Согласно [18, с. 190, 194], выражение (2.47) называется сферической 

масштабирующей функцией на сфере RΩ , если выполняются следующие 
условия: 

1) неотрицательная числовая последовательность njb монотонно убыва-

ет по n  и монотонно возрастает по j , то есть для всякого 0,1,...j =  имеет 
место неравенство 1,n j njb b+ < , 0,1,...n = , и для всякого 0,1,...n =  имеем 

1nj njb b+ > , 0,1,...j = ; при этом 0 1jb = ; 

2) lim 1njj
b

→∞
=  для всякого 0,1,...n = , то есть lim ( , ) δ( , )jj

B P Q P Q
→∞

= , где 

δ( , )P Q  – обобщённая дельта-функция Дирака. 
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Важно отметить, что, в силу последнего условия, 
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что обеспечивает теоретическую возможность аппроксимации с любой 
точностью. В силу равенства Парсеваля, 
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При этом, погрешность аппроксимации монотонно убывает с возрас-
танием масштабного параметра j . 

Можно доказать, что [18, с. 205] 
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= ∑ ∑ , и, следовательно, вычисление свёртки можно 

заменить гармоническим анализом сигнала f  по сфере и последующим 
гармоническим синтезом (2.50). Здесь верхний предел суммирования jN
зависит от выбранного масштаба j . 

Отметим также, что 
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где своеобразные степенные дисперсии 
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определяют спектр масштабирующей функции ( , )j kB x x  [19].  

Из сопоставления (2.52) и (2.35) следует, что для обеспечения равенств 
2 2σ ( ) σ ( )n n jf B=  при 0,..., jn N=  достаточно положить 
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Это соотношение позволяет подбирать масштаб j  так, чтобы спектр 
масштабирующей функции приближённо соответствовал спектру анали-
зируемой функции ( )f x . 

Разность масштабирующих функций двух последовательных масшта-
бов называется (линейным) вейвлетом 
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Точки RP∈Ω называются полюсами, а коэффициенты ,nj njb w   
называются масштабирующими коэффициентами масштаба (уровня) j , 
соответственно, масштабирующей функции или вейвлета. Если f – ка-
кая-нибудь функция (сигнал) пространства ( )2 RL Ω на сфере RΩ , то ее 
вейвлет-преобразованием называется сферическая свёртка (скалярное 
произведение) 

 

 ( ) ( )( ) ( , ) ( )
R

j j j p p RG W f W f d
Ω

= ∗ ≈ Ω∫x x x x x ,           (2.55) 

 

где jW  обозначает вейвлет (2.54) масштабного уровня j . 

Результат ( )jG x  
вейвлет-преобразования изучаемой функции собира-

ет более тонкую структуру сигнала, содержащуюся в 

11( ) ( )( )
jjf x B f x
++ = ∗ , но не содержащуюся в ( ) ( )( )

jjf x B f x= ∗ . 

При этом, если свёртка сигнала с масштабирующей функцией (2.47) пред-
ставляет собой определённое сглаживание изучаемой функции путём низ-
кочастотной фильтрации, то свёртку (2.55) с вейвлетом (2.54) естественно 
трактовать как полосовой фильтр, соответствующий определённой полосе 
спектра. 

В конечном счёте изучаемую функцию можно представить в виде 
суммы разномасштабных слагаемых 

 

 
1( ) ( ) ( ) ( )

J
j j J

j j
f x f x G x f x′ +

′=
= + + ∆∑ ,                     (2.56) 

 

что и определяет сущность разномасштабного моделирования (аппрокси-
мации). Здесь ( )jf x′  обозначает изучаемую функцию, сглаженную до 
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масштаба j′ , а ( )jG x  – полосовые детали изучаемой функции, соответ-

ствующие масштабам , 1,...,j j j J′ ′= + . 
Можно доказать, что всевозможные функции вида ( ), ( )j jf x G x′  

и 1( )Jf x+∆  заполняют определённые непересекающиеся подпространства 
исходного пространства ( )2 RL Ω , а объединение этих подпространств 
практически совпадает с ( )2 RL Ω . Эти подпространства называют, соот-
ветственно, референцным, детализирующим и остаточным. 

Выбор конкретных значений j′  и J существенно зависит от задачи 
анализа и имеющихся данных. При наличии достаточной информации об 
изучаемой функции значимость остатка 1 1( ) ( ) ( )J Jf x f x f x+ +∆ = −  можно 
сделать, как угодно, малой. Ядра, покрывающие различные полосы частот, 
доставляют удобный инструмент вставки информации, полученной в раз-
личных частях спектра, в единый сигнал, что очень полезно при комбини-
ровании разнородных измерений (например, гравиметрия наземная, спут-
никовая, аэрогравиметрия). 

В общем случае разномасштабное разложение (2.56) не является ни 
прямым, ни ортогональным.  Но это не мешает тому, что каждое слагае-
мое в этой аппроксимации описывает только такой «слой» исходного сиг-
нала, который соответствует детализирующему пространству с опреде-
лённым промежутком частот и, следовательно, с определённой разреша-
ющей способностью. Хотя большинство физических полей, в том числе 
ГПЗ, проявляет значимую корреляцию в пространстве, описанная проце-
дура – благодаря управляемой локализации базиса – позволяет целена-
правленно выполнять декорреляцию сигналов. 

Билинейные вейвлеты. Несколько по-другому вводятся так называемые 
билинейные вейвлеты, коэффициенты которых определяются из уравне-
ния [20, с. 5, 67] 

 

 2 2
1( ) ( ) ( ) ( ),j j j jw n w n b n b n n+= − ∀

.                     (2.57) 
 

Отсюда следует, что, если 1( ) ( ) ( )j j jw n b n b n+= −  – масштабирующий 

коэффициент первичного вейвлета масштаба j , то масштабирующий ко-
эффициент двойственного вейвлета 1( ) ( ) ( )j j jw n b n b n+= +

. 
 

1( , ) ( , ) ( , )j j jW P Q B P Q B P Q+= − =  
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1

2

2
0
1

2 1( )
4

n
p q

j n
n p q p q
n

x xn Rw n P
x x x xR

+
∞

=
≠

   +    = ⋅
   π    

∑ ,                  (2.58) 

 

1( , ) ( , ) ( , )j j jW P Q B P Q B P Q+= + =

 
 

 
1

2

2
0
1

2 1( )
4

n
p q

j n
n p q p q
n

x xn Rw n P
x x x xR

+
∞

=
≠

   +    = ⋅
   π    

∑ 

,                 (2.59) 

Если положить ( , ) ( , )j jW P Q W P Q=   для j∀ , то 
 

 2 2
1( ) ( ) ( ),j j jw n b n b n n+= − ∀ .                           (2.60) 

 

Можно показать, что введённые конструкции, так же, как и в случае 
линейных вейвлетов, позволяют выполнить разномасштабное моделиро-
вание типа (2.56) и разложить исходное пространство на соответствующие 
подпространства референцное, детализирующие и остаточное 

 

0
0

1(2) (2) ( )
J

J j jJ J
j J

f B f B f w w f
−

=
= ∗ = ∗ + ∗ ∗ =∑ 

 
 

0 0
0

1
( ) ( )

J
J J j j

j J
B B f w w f

−

=
= ∗ ∗ + ∗ ∗∑ 

.                    (2.61) 

 

Подробности о билинейных вейвлетах можно найти в работах [21, с. 5, 
22, 23, с. 210]. 

2.3.2. Оценивание коэффициентов разложения свёртки  
по СРБФ методом наименьших квадратов 

Будем полагать в дальнейшем, что полезный сигнал f  является функ-
цией ограниченных частот вида 

 

 
0

( ) ( )
n n

nm nm
n m n

f P a Y P
′

= =−
= ∑ ∑ ,                             (2.62) 

 

и принадлежит пространству с воспроизводящим ядром 
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0

0 0,...,
( , ) (2 1) ( ),

0n n n
n

n n
K P Q n b P v b

n n

∞

=

′≠ =
= +  ′= >
∑ ,            (2.63) 

 

где cos ψv = .  
Пусть далее на сфере RΩ  радиуса R  задано такое множество несовпа-

дающих точек 2
1,..., , ( 1)NQ Q N n′= + , что система уравнений 

 

 
0

( ) ( ); 1,...,
n n

nm nm k k
n m n

a Y Q f Q k N
′

= =−
= =∑ ∑ ,                  (2.64) 

регулярна и, следовательно, позволяет однозначно определить коэффици-
енты nma  (соответствующую систему функций обычно называют чебы-
шевской [24, c. 28]). Знание nma  позволяет однозначно представить свёрт-
ку (2.62) с (2.63) в виде линейной комбинации 
 

 
1

( ) ( )( ) ( , )
N

k k
k

f P K f P b K P Q
=

= ∗ = ∑ ,                          (2.65) 

 

где коэффициенты nma  и kb  связаны регулярным соотношением 
 

 
1

( ) ; 0,...,
N

nm k k nm
k

Y Q b a n n
=

′= =∑ .                     (2.66) 

 

В самом деле, если nma  из (2.66) подставить в (2.62) и воспользоваться 
(2.19), то получим (2.65). Таким образом, если обкладка и ядро принадле-
жат одному и тому же пространству, то свёртку можно представить ли-
нейной комбинацией ядерных функций. 

В частности, мы вправе рассматривать свёртки сигналов с масштаби-
рующей функцией (2.47) как линейные комбинации соответствующих 
ядер, и для оценивания коэффициентов таких линейных комбинаций есте-
ственно пользоваться методом наименьших квадратов. Уравнения связи 
при этом имеют вид 

 

( ) ( )( ) ( , ) ( )
R

j j j p p Rf B f B f d
Ω

= ∗ ≈ Ω =∫x x x x x
 

 

 
1 1

( , ) ( , ) ( )
k k

K
k j p k j p

k k
B B e

∞

= =
= α ≈ α +∑ ∑x x x x x ,             (2.67) 
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где ( )e x  – случайные ошибки измерений. 
Первоначально неизвестные коэффициенты kα , по существу, играют 

такую же роль, как и гармонические коэффициенты nma  в рядах по шаро-
вым функциям, то есть являются коэффициентами разложения по опреде-
лённым базисным функциям, в данном случае – по СРБФ. 

Так, например, если получено подобное разложение для возмущающе-
го потенциала T  

 

 
1

( ) ( , )
k

K
j k j p

k

GMT B
R =

= α∑x x x ,                            (2.68) 

 

то и любой функционал F на потенциале может быть вычислен по фор-
муле 

 

 
1

( )( ) ( )( , )
k

K
j k j p

k

GMF T F B
R =

= α∑x x x .                       (2.69) 

 

Оцениваются коэффициенты разложения стандартным методом 
наименьших квадратов 

 

 1 2 1
ˆˆ ˆ( ) , ( )T T TA PA A Pf C A PA− −
αα = = σ .                   (2.70) 

 

где A  – матрица уравнений связи, элементами которой служат значения 
ядра;  

P  – весовая матрица исходных значений сигнала;  
f  – столбец исходных значений сигнала в определённом количестве 

точек с координатами x  (количество таких значений >  количества K  по-
люсов kp ); 

ˆCα  – ковариационная матрица результатов уравнивания ˆ kα ;  
2σ̂  – оценка дисперсии единицы веса.  

Подробности см, например, в работах [7, 10, 13, 25–27]. Полезная ин-
формация содержится также в работе [28], в которой показано, что полюса 

kp  целесообразно помещать на некоторой глубине относительно сферы 

RΩ . 
К сожалению, однако, нередко непосредственно решить систему нор-

мальных уравнений ( )T TA PA A Pfα =  не удаётся из-за того, что матрица 
связи A  плохо обусловлена или даже имеет неполный ранг. В таких слу-



 

112 

чаях применяется регуляризация по Тихонову [29, 30], что, конечно, за-
метно усложняет всю процедуру оценивания коэффициентов разложения. 

Но в любом случае следующая теорема существенно сокращает объём 
вычислений при определении коэффициентов разложения kα . 

Теорема 2 [31]. Пусть в некоторой свёртке ( )( )K f x∗ , обкладка 

( ) ,Rf x ∈Ω а ядро
1

2
0

2 1( , ) ( )
4

n

k n n
n

n RK x x K P v
rR

+∞

=

+  =  
π  

∑  таково, что

n
0 для n = 0,...,n

K
= 0 для n > n

′≠
 ′

. 

Предположим, что матрица связи A  в (2.70) имеет полный ранг и, сле-
довательно, найдены такие коэффициенты kα , что 

 

1
( )( )= ( , )

N
k k

k
K f x K x x

=
∗ α∑ .                               (2.71) 

 

Если 
 

 
1

2
0

2 1( , ) ( )
4

n

k n n
n

n RL x x L P v
rR

+∞

=

+  =  
π  

∑ ,                      (2.72) 

 

какое-то другое ядро, в котором 0nL =  при n n′>  то 
 

 
1

( )( )= ( , )
N

k k
k

L f x L x x
=

∗ α∑ .                              (2.73) 

 

Таким образом, коэффициенты разложения kα  не зависят от СРБФ, ес-
ли только они ограничены одним и тем же значением n′ . Это означает, 
что, если мы определили коэффициенты аппроксимации для низкочастот-
ного сглаживания сигнала, то для выделения деталей изучаемой функции 
с помощью вейвлетов можно пользоваться теми же коэффициентами! То 
есть, если 

 

 
1

( ) ( )( )= ( , )
k

K
j j k j p

k
f B f B x x

=
= ∗ α∑x x ,                    (2.74) 

 

то и 
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1

( ) ( )( )= ( , )
k

K
j j k j p

k
g W f W x x

=
= ∗ α∑x x .                   (2.75) 

 

Пусть, например, требуется построить локальную модель ГПЗ в опре-
делённом регионе путем совместного использования как наземных грави-
метрических данных, так и результатов спутниковой гравиметрии. 

Низкочастотную часть полезного сигнала f  (например, геопотенциа-
ла) можно, как обычно, достаточно надёжно предсказать с помощью из-
вестных рядов по шаровым функциям до некоторой степени N  

 

 
0

( ) ( ) ( )
N n

nm nm
n m n

f a Y f
= =−

+ ∆∑ ∑x x x .                            (2.76) 

 

Поэтому основную проблему составляет моделирование остаточной 
высокочастотной части ( )f∆ x . Уравнения связи для этого, по существу, 
имеют стандартный вид, а именно 
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( ) ( ) ( , )

K
k k

k
f e B

=
∆ + = α ⇔ ∆ + = α∑x x x x f e A . 

 

В более подробной записи 
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где 1 2( ), ( )f f∆ ∆x x  и, соответственно, 1 2,e e  и 1 2,B B  указывают на нали-
чие двух разномасштабных типов наблюдений количеством 1n  и 2n   
(в общем случае, разномасштабных типов может быть и больше). Каждо-
му типу измерений соответствует своя масштабирующая функция или 
свой вейвлет со своими масштабными уровнями, но коэффициенты раз-
ложения α  можно определять в единой схеме. 

Примером практического использования комбинирования глобальной 
модели ГПЗ, топографической модели, наземной гравиметрии и аэрогра-
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виметрии при создании международной системы высот (International 
Height Reference System – IHRS) может служить работа [18]. 

2.3.3. Численное интегрирование 

Другой подход к вычислению вейвлет-преобразований основан непо-
средственно на численном интегрировании. В частности, поскольку объ-
ектом вычислений является свёртка, то можно воспользоваться известным 
свойством преобразований Фурье о том, что свёртка в пространственной 
области эквивалентна произведению образов Фурье в частотной области. 
При этом, естественно, воспользоваться известной техникой быстрых 
преобразований Фурье. 

Но проще всего воспользоваться методами типа Driscoll and Healy [20]: 
– создать на сфере RΩ  регулярную сетку полюсов так, что 

 

  ,: (cos cos ,cos sin ,cos )j j j j j j j T
i ik i l l l lx x R= = β λ β λ β ,         (2.78) 

 

где долготы /j
i ji Lλ = π  и  широты / 2 / (2 ),j

jl l Lβ = −π + π  0,...,2 1ji L= − , 

0,...,2 jl L= , (2 1) 2j j jN L L= + ⋅ ; 

jL  – константа, определяющая размер шага сетки; 

– соответствующие весовые коэффициенты численного интегрирова-
ния зависят только от широты и шага сетки и находятся по формуле 
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∑ ;           (2.79) 

 

– в результате можно получить коэффициенты [22] 
 

 , ( )j j
j k k kd w f x= ,                                   (2.80) 

 

такие, что 
 

,
1

( ) ( )( ) ( , ) ( ) ( , )
j

R

N

j j j p p j k j k
k

f B f B f d d B
=Ω

= ∗ ≈ ω ≈ ∑∫x x x x x x x .    (2.81) 

 

Известны и другие сетки узлов с аналитически известными весовыми 
коэффициентами, но необходимость знания значений интегрируемой 
функции именно в специальных узлах далеко не всегда согласуется с ре-



 

115 

альными исходными данными. В связи с этим возникает дополнительная 
проблема интерполяции, что существенно ограничивает возможности та-
ких подходов. В то же время следует отметить, что при численном инте-
грировании не приходится сталкиваться с регуляризацией плохой обу-
словленности, как это имеет место в параметрическом определении коэф-
фициентов разложения по СРБФ. 

Однако, в конечном счёте предпочтение обычно отдаётся именно па-
раметрическому методу, не требующему обязательной регулярности сетки 
узлов с исходными данными и позволяющему не только определить нуж-
ные коэффициенты, но и оценить их точность. Заметим также, что при 
вычислении свёрток численным интегрированием совместная обработка 
разномасштабной информации типа (2.77) не представляется возможной. 

2.3.4. Виды сферических масштабирующих функций  
и соответствующих вейвлетов 

В современной литературе можно найти описание множества различ-
ных сферических вейвлетов. Все они имеют структуру вида (2.54) и отли-
чаются масштабными коэффициентами jb масштабирующей функции 

(2.47). Мы приведём здесь только несколько наиболее простых видов, 
причём будем пользоваться диадной (двоично-рациональной) формой как 
наиболее простой и наглядной: 

– функция Шеннона (Shannon) 
 

 
,

1 если [0;2 )

0 если 2

j

n j j

n
b

n

 ∈= 
 

,                                  (2.82) 

 

функция выполняет в пространственной области прямоугольную филь-
трацию, соответствующую частотной полосе от 0-ой степени до степени 

12 j−  для масштабирующей функции и от 2 j  до 12 1j− −  степеней для 
вейвлетов. В результате функция Шеннона имеет наивысшую локализа-
цию в частотной области, а за счёт этого – наибольшую осцилляцию  
в пространственной области. Обычно функция Шеннона используется  
в процессе анализа сигналов, чтобы избежать потери спектральной ин-
формации; 

– функция полиномиально-кубическая (CuP) 
 

 
2 1

,
(1 2 ) (1 2 ) если [0;2 )

0 если 2

j j j

n j j

n n n
b

n

− − + − + ∈= 
 

.                (2.83) 
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Функция CuP, наоборот, имеет наименьшую пространственную осцил-
ляцию, но фильтрация более гладкая, все рабочие масштабные коэффици-
енты 1< ; 

– функция Блэкмана (Blackman) 
 

 
1

1
,

(1) если [0;2 )

( ) если [2 ,2 )

0 если 2

j

j j
n j j

j

n

b A n n

n

−

−

 ∈
= ∈

 

,                               (2.84) 

 

где 21 1 2 2 4( ) cos cos
50 2 252 2j j j

n nA n π π   = − +   
   

. 

 

По своим свойствам функция Блэкмана представляет некий компро-
мисс между двумя предыдущими вариантами. Обычно функции CuP и 
Блэкмана рекомендуются при синтезе, чтобы уменьшить ошибки система-
тического характера. 

– масштабирующие (сглаженные) функции Хаара (Xaar) 
 

 
( 1)

0, 1 2
( ) 1 ( 1 ) , 0 1

2

j

j k k
j j j

b v
B v k b v b v b− +

< −
=  +

− + − π



 
,                    (2.85) 

 

где 2 j
jb −=  или 1 cos(2 )j

jb −= − π , а k  обозначает некоторую фиксиро-

ванную степень многочлена и регулирует степень гладкости ядра. Соот-
ветствующие вейвлеты Хаара 

 

( 1)
1

1
( 1) ( 1)
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+  − + − − +  π 


−







 

   (2.86) 

 

Сферические вейвлеты Хаара (Xaar) доставляют очень удобный ин-
струмент локальной аппроксимации, позволяющий как бы увеличивать 
мелкие детали. Эти вейвлеты отличны от 0 только в некоторой очень не-
большой обследуемой окрестности на сфере, и поведение сигнала вне этой 
окрестности вообще во внимание не принимается. Следовательно, локаль-
но можно обследовать всё более и более мелкие детали с повышенной 
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точностью без ухудшения аппроксимации сигнала во всех остальных ча-
стях. Размер локальной области зависит от масштаба j  вейвлета jW   

и уменьшается с увеличением j . 
Упомянутые функции являются примерами масштабирующих функ-

ций с ограниченным спектром ( ,: 0j n jN b∃ = =  для jn N∀ > ). В качестве 

примера масштабирующей функции с неограниченным спектром ( , 0n jb ≠  

для n∀ ) отметим функцию Абеля-Пуассона с , exp( /2 )j
n jb n= − ρ , где 

0n >  – вспомогательный параметр. Удобно, что соответствующая сумма 
ряда (2.47) представляет собой элементарную функцию, строго положи-
тельную на сфере и достаточно быстро убывающую с увеличением сфе-
рического расстояния между x  и px . Всё это упрощает вычислительные 

алгоритмы. Подробности см., например, в монографии [32, с. 199].  
Примеры использования масштабирующей функции Абеля-Пуассона  

в сферическом вейвлет-анализе гравиметрических данных см. в работах 
[25, 26, 33]. В работах [19, 21, 34] с помощью сферических вейвлетов по-
строены оригинальные модели ГПЗ по данным спутниковых миссий 
CHAMP, GOCE и GRACE. 

Сравнительный анализ различных СРБФ можно найти, например, в ра-
боте [13]. 

2.4. Среднеквадратическая коллокация 

2.4.1. Чистая коллокация  
как обобщенная задача интерполяции 

Несколько иной класс сравнительно новых алгоритмов, обеспечиваю-
щих, вообще говоря, «восстановление» функций по результатам дискрет-
ных измерений различных «проявлений» этих функций, принято называть 
коллокацией. 

Систематическую теорию для решения подобных задач удается постро-
ить различными путями: либо опираясь на оптимальный линейный прогноз 
и фильтрацию на основе ковариационной теории случайных функций (ста-
тистический подход), либо опираясь на основные положения функциональ-
ного анализа (функциональный подход). Однако в конечном счёте, оба пути 
приводят к одним и тем же результатам и, таким образом, обогащают друг 
друга интерпретациями с совершенно разных позиций [33]. 

Термин «коллокация» после работы известного отечественного мате-
матика Л. В. Канторовича [35] широко используется в математике в связи 
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с решением интегральных и дифференциальных уравнений, когда при-
ближённое решение определяется из условия удовлетворения уравнению  
в некоторых заданных точках. Однако мы в дальнейшем, вслед за работа-
ми [4, 36, 37], будем вкладывать в этот термин несколько иной смысл, бо-
лее подходящий для геодезических приложений и представляющий собой, 
с математической точки зрения, обобщение метода наименьших квадратов 
на случай бесконечномерных гильбертовых пространств. 

В дальнейшем будем пользоваться сферической аппроксимацией, то 
есть точки с геодезическими координатами , ,h ϕ λ  отнесёнными к эллип-
соиду, формально будем заменять точками со сферическими координата-
ми , ,r θ λ , отнесёнными к среднеземной сфере радиуса .R  При этом  

/2 –θ = π ϕ, r R h= + . 
Начнем с постановки известных задач интерполяции функции, для 

простоты, одной переменной. 
Некоторая функция , аналитическое выражение которой неизвестно, 

определена на промежутке [ ],a b , но задана только в отдельных точках 
(узлах интерполяции) 1 2, ,... nx x x  этого промежутка. 

Задача интерполяции № 1 (локальная интерполяция). 
Располагая числами 1 ( ), 1,2,...,iy f x i n= =  и зная, что  принадлежит 

некоторому классу K  функций (например, непрерывных на [ ],a b ), требу-
ется указать способ, с помощью которого можно было бы приписать зна-
чению  в заданной промежуточной между узлами точке 1( , )nx x x′∈  не-
которое «разумное» приближенное число, то есть требуется проявить сво-
его рода «искусство чтения между строк». 

Задача интерполяции № 2 (глобальная интерполяция). 
Требуется восстановить функцию f , то есть найти такую аналитиче-

ски заданную функцию f̂ , которая приближала бы  на [ ],a b , а ее зна-
чения в узлах интерполяции совпадали бы с заданными значениями функ-
ции . 

Полиномиальный подход к этим задачам заключается, как известно,  
в неявном или явном выборе интерполяционного полинома f̂  степени не 
выше 1n − , например, в форме Лагранжа или Ньютона и в вычислении 

( )ˆ ( )f x f x′ ′≈ . 
Более абстрактная формулировка задачи позволяет получить решение 

гораздо более широкого, чем интерполяция, класса задач и, в конечном 
счете, приведет нас к методу обработки измерений, чрезвычайно эффек-
тивному с точки зрения геодезических приложений. 

f

f

f

f

f
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Пусть изучаемая функция  принадлежит некоторому классу K  
функций, определенных в заданной ограниченной замкнутой области  –
одномерной, двумерной или трехмерной – неважно (размерность области 
D  обусловлена количеством независимых переменных у изучаемой функ-
ции ). Пусть далее на  определены 1n +  линейных линейно-
независимых функционалов 1 2, ,..., ,nL L L F , и нам известны значения 
первых n  из этих функционалов на , то есть известны числа 

( ), 1,2,...,i il L f i n= = . 
Задача коллокации № 1 (локальная коллокация). 
Требуется указать способ, с помощью которого можно было бы припи-

сать значению ( )F f  некоторое «разумное» приближенное число. 
Задача коллокации № 2 (глобальная коллокация). 
Требуется восстановить функцию , то есть найти такую аналитиче-

ски заданную функцию f̂ , которая приближала бы  на , а значения 
функционалов 1 2, ,..., nL L L на  совпадали бы с заданными числами 

1 2, ,..., nl l l , соответственно. 
Описанные задачи будем называть задачами коллокации. Если участ-

вующие в постановке задач функционалы 1 2, ,..., ,nL L L F  суть дельта-
функционалы, соответствующие фиксированным точкам 

1 2, ,..., ,nP P P P D′∈ , то задачи коллокации ничем не отличаются от задач 
интерполяции, в частности, тех, с которых мы начали содержание этого 
пункта (при [ ],D a b= ). Таким образом, интерполяция есть частный слу-
чай коллокации. 

Рассмотрим в общем виде решение (локальной) задачи коллокации № 1. 
Поскольку вся количественная информация об изучаемой функции  

содержится только в числах 1 2, ,..., nl l l , то искомое число ( )F f  есть, ко-
нечно, некоторая функция от 1 2, ,..., nl l l . Мы будем ее аппроксимировать 
линейной однородной функцией, т. е. будем полагать, что 

 

1 1 2 2
ˆ( ) ( ) ... n nF f F f a l a l a l≈ = + + + ,                      (2.87) 

 

где F̂  – линейный функционал, аппроксимирующий F ; 
1 2, ,..., na a a  – коэффициенты линейной комбинации подлежат опреде-

лению. 
Перепишем (2.87) с помощью матричной символики: 

 

f
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ˆ( ) ( ) TF f F f a l≈ = , 
 

где a  и l  – n-мерные столбцы чисел 1,..., na a  и 1,..., nl l , соответственно.  
Так как ( )i il L f= , то (2.87) равносильно следующей записи 

 

1 1 2 2
ˆ ( ) ( ) ( ) ... ( ) ( )T

n nF f a L f a L f a L f a L f= + + + = , 
 

где L – n-мерный столбец исходных функционалов 1,..., nL L (векторный 
функционал, преобразующий функции из H  в n-мерные векторы). 

Следовательно, 
ˆ TF a L= .                                            (2.88) 

 

При отыскании необходимых коэффициентов a  полезно учесть, что 
множество всех линейных ограниченных на H  функционалов образует 
гильбертово пространство H ∗  (сопряженное с ). Заданные функциона-
лы 1,..., nL L H ∗∈ , будучи линейно-независимыми, образуют базис n-

мерного подпространства { }1 1Span ,..., nH L L∗ = . При этом F H ∗∈ , но  

в общем случае F H ∗∉ , так как F  по условию линейно независим от 
1,..., nL L . Поэтому естественно коэффициенты a  в (2.88) подобрать таким 

образом, чтобы 1F̂ H ∗∈ оказался элементом наилучшей аппроксимации 

F H ∗∈  и, следовательно, расстояние между F  и F̂  по метрике  бы-
ло бы наименьшим среди всех других возможных. 

Таким образом, по определению, F̂  такой элемент из 1H ∗ , что 
 

1ˆ
ˆ ˆinf

F H
F F F F

∗

∗ ∗

∈
− = − .                                    (2.89) 

 

Подобные задачи имеют стандартное решение: коэффициенты a  суть 
корни следующей системы линейных алгебраических уравнений: 

 

 
1 1 1 1 2 2 1 1

2 1 1 2 2 2 2 2

1 1 2 2

( , ) ( , ) ... ( , ) ( , )

( , ) ( , ) ... ( , ) ( , )

( , ) ( , ) ... ( , ) ( , )

n n

n n

n n n n n n

L L a L L a L L a L F

L L a L L a L L a L F

L L a L L a L L a L F

∗

∗

∗

∗ + ∗ + + ∗ =

∗ + ∗ + + ∗ =

∗ + ∗ + + ∗ =



,            (2.90) 
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или в матричном виде  
 

a = bГ , 
где Г  – матрица Грама, ( , )i j  позицию, в которой занимает скалярное 

произведение в H ∗   функционалов ( , ), 1,2,..., , 1,2,..., ;i jL L i n j n= =   

b – столбец правых частей системы (2.90), то есть,  ( , ) ,ib L F ∗=  
1,2,...,i n= . 
Поэтому, очевидно, 

1 1T Ta = b, a b− −=Г Г ,                                  (2.91) 
 

и, в силу (2.88),  
 

1
^

T= b L−Г Г .                                           (2.92) 
 

Матрица Грама Г  нормальна, то есть симметрична и положительно 
определена. Следовательно, обратная матрица 1−Г  обязательно существу-
ет. 

Таким образом, согласно (2.87), число 
 

1 1ˆ ( ) ( ) ( )T TF f b L f b l F f− −= = ≈Г Г ,                      (2.93) 
 

решает поставленную задачу коллокации № 1. При этом, если искомый 
функционал F  совпадает с одним из заданных функционалов iL , то ре-
шение (2.92) даст точно такой же функционал iL . Действительно, в ука-
занных условиях правая часть системы (2.90′) есть i−й столбец матрицы Г , 
и потому a  в (2.91) есть i−й столбец единичной матрицы размером ,n n . 
Следовательно, формула (2.92) дает 

 

ˆ
iF = L .                                               (2.94) 

 

Именно это свойство коллокации оправдывает её название и позволяет 
считать её обобщением интерполяции. 

Итак, аппроксимация значения нужного функционала F сводится  
к простейшим действиям с матрицами (2.93). 

Что касается способа вычисления скалярных произведений в сопря-
женном пространстве, то, как показано в параграфе 2.1, воспроизводящее 
ядро ( , )K A B  гильбертова пространства H  позволяет легко находить 
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представителя F HΨ ∈  для любого линейного ограниченного функциона-

ла F H ∗∈ . 
Согласно (2.15), (2.17) 

 

: ( ) ( )F FF f  = f, , f HΨ = Ψ ∀ ∈ .                           (2.95)  
 

Поэтому, согласно (2.3) 
 

( ) ( ( ), ( , )) = ( ( , ), ( ))F F B F BА  = B K B A K B A BΨ Ψ Ψ =  
 

( ( , )) ( , )BF K A B K A F= = .                               (2.96)  
 

где ( , )K A B  представляет собой искомый представитель ( )F АΨ ; 
А  – текущая точка.  
Таким образом, для практического определения ( )F АΨ  достаточно 

подействовать соответствующим функционалом F  на ядро ( , )K A B  как  
на функцию точки B. 

В связи с этим легко получить и скалярное произведение 1 2( , )F F  двух 

функционалов 1F  и 2F  в гильбертовом пространстве H ∗ . 
Действительно, в силу (2.17), 

 

1 21 2( , ) ( , )F FF F ∗ = Ψ Ψ .                                     (2.97) 
 

Но, в соответствии с (2.96), 
 

1 21 2( , ), ( , )F FK A F K A FΨ = Ψ = , 
 

и, следовательно, 
 

1 2 1 2 1 2 1 2( , ) ( ( , ), ( , )) ( ( , , ), ( , )) ( , )A AF F K A F K A F K F A K A F K F F∗ = = = . (2.98) 
 

Таким образом, для получения числа 1 2( , )F F ∗  достаточно на ( , )K A B  
подействовать сначала функционалом 1F , как на функцию точки A , а за-
тем функционалом 2F  как на функцию точки B . 

Здесь и далее принята договоренность, что запись ( )F f  равносильна 
записи ( )f F . Это и определяет смысл записи ( , )K A F  в (2.96)  
и 1 2( , )K F F в (2.98). В частности, 
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1 2 1 2( , ) , ( , )
A B

K F F F F K A B= . 
 

Рассмотрим теперь решение второй (глобальной) задачи коллокации. 
Оно сводится, очевидно, к решению следующей системы n уравнений 

 

Lf l= ,                                               (2.99) 
 

где функция f  должна быть выбрана из H .  
Эта система уравнений имеет по форме тот же смысл, что и система 

параметрических уравнений связи в ТМОГИ. Однако имеется и существен-
ное отличие. Дело в том, что в классической ТМОГИ в роли неизвестного 
выступает всегда некоторый конечномерный вектор. Теперь же неизвест-
ной является функция, представляющая собой элемент бесконечномерного 
гильбертова пространства. Каким бы большим ни было число n, количество 
уравнений в (2.99) всегда можно трактовать как меньшее, чем число неиз-
вестных. Поэтому система (2.99) всегда имеет решение, причем решений 
бесчисленное множество. Обозначим множество всех решений системы 
(2.99) через L l− . Можно доказать, что на этом множестве существует 
единственная функция наименьшей нормы. Такая функция называется 
нормальным решением системы (2.99) и принимается в качестве решения 
f̂  глобальной задачи коллокации. Оператор, переводящий исходные дан-

ные l  в нормальное решение  системы (2.99), называется главным псев-

дообратным оператором и обозначается L+ . Таким образом, 
 

f̂ L l+= ,                                            (2.100) 
 

так что, по определению, 
 

ˆ ˆ: inf HH f L l
f f f

−∈
= = .                                 (2.101) 

 

Можно доказать, что нормальное решение отличается от искомой 
функции f меньше всего (по метрике пространства H) по сравнению с 
любым другим возможным решением системы (2.99) и в этом смысле яв-
ляется оптимальным. Из других возможных обоснований оптимальности 
нормального решения приведем без доказательства следующую теорему 
из монографии [4]. 

f̂
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Теорема 3. Выберем какое-нибудь положительное число ˆС f , и на 

каждом решении f L l−∈ , удовлетворяющем условию f C  , вычислим 

значение функционала F H ∗∈ . Множество всех полученных чисел обра-
зует отрезок на числовой оси. Длина этого отрезка зависит, разумеется, 
от  и выбранной константы C , но серединой отрезка всегда служит 
значение F  именно на f̂  для F H ∗∀ ∈ !  

Таким образом, нормальное решение (2.100) глобальной задачи колло-
кации является оптимальным и с точки зрения решения локальной задачи 
коллокации: для всякого линейного ограниченного на H  функционала 
F  число ˆ( )F f  является оптимальным значением для ( )F f  при данной 
информации.  Можно доказать, что 

 

ˆˆ ( ) ( )F f F f= ,                                      (2.102) 
 

где F̂  определяется условием (2.89); 
f̂  определяется условием (2.101) (см.  ниже формулу (2.124)). 

Теперь наметим путь практического определения оператора L+ и, сле-
довательно, вычисления нормального решения f̂ . 

Прежде всего, заметим, что нет необходимости искать f̂  во всем бес-
конечномерном пространстве H. Эта функция, как будет показано ниже, 
всегда принадлежит конечномерному подпространству этого простран-
ства. 

Определение.  Множество всех функций из H , являющихся решени-
ем уравнения (2.99), но без правой части, 

 

0Lϕ = ,                                             (2.103) 
 

называется ядром векторного функционала L  и обозначается KerL . 
Можно доказать, что использование векторного функционала L  при-

водит к разбиению гильбертова пространства H  на два взаимно ортого-
нальных подпространства 

 

= Ker KerH L L⊥⊕ ,                                (2.104) 
 

где KerL  – бесконечномерно; 

F
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Ker L⊥  – конечномерно и имеет размерность n . Здесь Ker L⊥  – мно-
жество всех функций из H , каждая из которых ортогональна любой 
функции из KerL . Это множество называется ортогональным дополнени-
ем ядра векторного функционала.  Именно ортогональному дополнению 
ядра векторного функционала L  принадлежит нормальное решение f̂  
системы (2.99), то есть 

 

ˆ Kerf L⊥∈ .                                       (2.105) 
 

Доказательство этих утверждений можно найти, например, в работах  
[2, 3, 4, 6]. 

Итак, бесполезно искать f̂  во всем бесконечномерном множестве H . 
Достаточно ограничиться изучением лишь n-мерного подпространства 
Ker L⊥ , так как исходная информация не позволяет найти ту составляю-
щую функции f , которая принадлежит ядру используемого векторного 

функционала L . Этот факт определяет и практический путь отыскания f̂ . 
Действительно, предположим, что мы умеем определять базис 

1 2, ,..., ne e e  для Ker L⊥ . Тогда можно быть уверенным в существовании 
таких чисел 1 2, ,..., nc c c , что 

 

1 1 2 2
ˆ ... n nf c e c e c e= + + .                           (2.106) 

 

Так по условию задачи 
 

ˆLf l= ,                                            (2.107) 
 

то нужные коэффициенты 1 2, ,..., nc c c  суть корни следующей системы 
линейных алгебраических уравнений: 

 

1 1 1 1 2 2 1 1

2 1 1 2 2 2 2 2

1 1 2 2

( , ) ( , ) ... ( , ) ( , ) ,

( , ) ( , ) ... ( , ) ( , ) ,

( , ) ( , ) ... ( , ) ( , ) ,

n n

n n

n n n n n n

L L a L L a L L a L F

L L a L L a L L a L F

L L a L L a L L a L F

∗

∗

∗

∗ + ∗ + + ∗ =

∗ + ∗ + + ∗ =

∗ + ∗ + + ∗ =



          (2.108) 

 

или в матричном виде 
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, ,1 ,1n n n n
G c l= ,                                            (2.109) 

 

где ( )ijG g= , а  1 2( ), , 1,2,..., ; ( , ,..., )T
ij i j ng L e i j n c c c c= = = . 

Можно доказать, что det 0G ≠  и потому решение системы (2.109) все-
гда существует и единственно: 

 
1

,1 , ,1n n n n
c G l−= ,                                       (2.110) 

 

Подставляя c  в (2.106), получаем искомое решение глобальной задачи 
коллокации 

1
1, , ,1

ˆ
n n n n

f e G l−= ,                                       (2.111) 

 

где e  – строка базисных функций 1,..., ne e . 

Смысл оставшегося неопределённым базиса 1 2, ,..., ne e e  для Ker L⊥  
разъясняет следующий факт. 

Теорема 4. Одним из базисов (неортогональных) n-мерного подпро-
странства Ker L H⊥ ⊂  служит набор n линейно-независимых функций 

1 2( , ), ( , ),..., ( , )nK L B K L B K L B  текущей точки B , являющихся пред-
ставителями исходных линейно-независимых функционалов 1 2, ,..., nL L L  
соответственно. 

Доказательство см., например в [3, с. 135]. Здесь мы отметим лишь, что 
линейная независимость сопряженных функций (представителей) является 
непосредственным следствием линейной независимости исходных функ-
ционалов. 

Теперь понятно, что строка 1,ne   базисных функций в формулах 
(2.106)–(2.110) представляет собой строку сопряженных функций (пред-
ставителей) 1 2( , ), ( , ),..., ( , )nK L B K L B K L B , и потому элементами мат-
рицы G  в (2.109) служат числа 

 

( ) ( , ) ( , ) ( , )ij i j i j j i i jg L e L K L B K L L K L L= = = = .         (2.112) 
 

А матрица Г  в формулах (2.91)–(2.93), разрешающих (локальную) за-
дачу коллокации № 1, и матрица G  в формулах (2.106)–(2.110), разреша-
ющих (глобальную) задачу коллокации № 2, есть одна и та же нормальная 
матрица: 
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, ,,
( , )

n n n nn n
G K L L= =Г .                                     (2.113) 

 

Смысл последнего компактного обозначения таков: поскольку 
 

1

,1 ,1

( , )
( , ) ( , )

( , )
n n

n

K L B
LK A B K L B

K L B

 
  = = 
 
 



,                      (2.114) 

то 

,1 1, ,, 1, ,1
( ( , )) ( ( , ), ( , )) ( , )T T

Hn n n nn n n n
G L K L B K L B K L B K L L= = = ,           (2.115) 

где ( , )K L B  представляет собой n-мерный столбец сопряженных функций 
( , )iK L B  текущей точки B , то есть n-мерный столбец представителей ис-

ходных функционалов ( 1,2,..., )iL i n= ;  
( , )K L L  – симметричная n n× матрица, ( , )i j -позицию, в которой за-

нимают числа ( , )i jK L L . 

В этих обозначениях столбец b  из (2.90)–(2.93) записывается следую-
щим образом: 

 

,1 ,1,1
( ( , )) ( , )

n nn
b L FK A B K L F= = ,                           (2.116) 

 

где ( , )K L F  – n-мерный столбец чисел ( , )iK L F ;  
Итак, если класс функций, участвующий в постановке задач коллока-

ции, представляет собой гильбертово пространство H  с известным вос-
производящим ядром ( , )K A B , то: 

– решение (локальной) задачи коллокации № 1 практически реко-
мендуется находить по формулам (2.88), (2.90)–(2.93), опираясь на (2.113), 
(2.116), то есть 

 

1,1 ,11,
ˆ T

nn
F a L= ⋅ ,                                       (2.117) 

 

где столбец коэффициентов a  – корень системы 
 

, ,1,1
( , ) ( , )

n n nn
K L L a K L F= ),                              (2.118) 

таким образом, 
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1
1, , ,1

ˆ ( , ) ( , )T
n n n n

F K L F K L L L−= ⋅ ,                        (2.119) 

 
1

1, , ,1
ˆ ( ) ( , ) ( , )T

n n n n
F f K L F K L L l−= ⋅ ⋅ ;     (2.120) 

 

– решение (2.101) глобальной задачи коллокации практически реко-
мендуется находить по формуле (2.106), опираясь на следствие из теоре-
мы 4, то есть в виде линейной комбинации представителей исходных 
функционалов, 

 

,1 ,11, 1,
ˆ ˆ( ) ( , ) ( ) ( , )T T

n nn n
f B c K L B f c K L= ⇔ ⋅ = ⋅ ,                  (2.121) 

где столбец коэффициентов c  является решением системы 
 

, ,1 ,1
( , )

n n n n
K L L c l= .                                   (2.122) 

 

Таким образом, 
 

1
1, , ,1

ˆ ( ) ( , ) ( , )T
n n n n

f K L K L L l−⋅ = ⋅ .                             (2.123) 

 

Тем самым получено исчерпывающее решение обеих задач коллока-
ции. 

В заключение сделаем несколько полезных замечаний.  
1) согласно (2.123) и (2.120) 

 

1ˆ ˆ( ) ( , ) ( , ) ( )TF f K L F K L L l F f−= = ,                   (2.124) 
 

что является доказательством ранее указанного равенства (2.102); 
2) окончательные решения (2.120), (2.123) представляют собой ли-

нейные комбинации исходных чисел 1 2, ,..., nl l l : 
 

1, ,1
ˆ ( ) T

n n
F f a l= ⋅ ,                                      (2.125) 

 

,11,

ˆ ( ) ( )T
nn

f a l⋅ = ⋅ .                                     (2.126) 

Здесь  
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1
, ,1

1
, ,1

( , ) ( , ),

( ) ( , ) ( , ),

n n n

n n n

a K L L K L F

a K L L K L

−

−

= ⋅

⋅ = ⋅ ⋅

                               (2.127) 

 

где a  – столбец чисел; 
( )a ⋅  – столбец функций, составляющих новый базис n-мерного под-

пространства Ker L H⊥ ⊂ .  При этом 
 

( ) ( )Fa a F a⋅ = = ,                                        (2.128) 
0, если

( ) ( )
1, еслиi j j i

i j
L a a L

i j
≠

⋅ = =  =
.                            (2.129) 

 

Важно, что ( )a ⋅  и а  зависят только от используемого гильбертова  
пространства H  (конкретно, от его воспроизводящего ядра) и вида ис-
пользуемых функционалов L  и F  и не зависят от изучаемой функции f  
(соотношение (2.129) является следствием того свойства, которое объяс-
няет  термин «коллокация» и указано после формулы (2.93)).  Напомним, 
что аналогичная ситуация имеет место в классических задачах интерполя-
ции с помощью полинома Лагранжа (роль ( )ia ⋅  играют «полиномы влия-
ния» i-го узла), численном интегрировании ( ( )ia ⋅  – те же полиномы влия-
ния, а ( )ia F – весовые коэффициенты) и в других задачах вычислитель-
ной математики; 

3) согласно (2.123) и (2.99), 
 

1ˆ ( , ) ( , ) ПTf K L K L L f f−= ⋅ ⋅ ⋅ = ,                       (2.130)  
 

где это легко проверить непосредственно – 
 

2П П П = П⋅ = .                                    (2.131) 
 

Оператор 
 

1

1, , ,1 ,11,
П ( , ) ( , ) ( )T

n n n n nn
K L K L L L a L−= ⋅ ⋅ ⋅ = ⋅ ,                   (2.132) 

 

естественно, назвать проектором. Его областью определения служит ис-
ходное гильбертово пространство H , а множество значений, согласно 
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(2.105), есть ортогональное дополнение к ядру Ker L⊥  исходного вектор-
ного функционала L  (см.  формулу (2.104)). При этом Ker L H⊥ ⊂  и на 
Ker L⊥ проектор Π является тождественным, то есть 

 

Ker , Пf L H f f⊥∀ ∈ ⊂ = .                           (2 .133)  
 

Проектор Π является основным оператором, разрешающим обе задачи 
коллокации, поскольку, согласно (2.119), (2.125) и (2.127), 

 

ˆ ˆП , Пf f F F= = ⋅ ;                                       (2.134) 
4) известно, что классические формулы полиномиальной интерполя-

ции и численного интегрирования, имеющие, как уже подчеркивалось  
в замечании 2, ту же структуру, что и формулы (2.125), (2.126), являются 
точными на множестве полиномов, удовлетворяющих условиям интерпо-
ляции и имеющих степень, не превышающую определенное число, зави-
сящее от количества исходных узлов. При этом исходными данными слу-
жат значения дельта-функционалов. Соотношение (2.133) показывает, что 
решения (2.125), (2.126) задач коллокации, обобщающих в указанном 
пункте 2.4.1 в смысле задачи интерполяции, являются точными на множе-
стве функций, зависящем от структуры используемого гильбертова про-
странства H  и от вида исходных функционалов L . При этом независимо 
от вида функционала F  

 

ˆFf Ff=  для Kerf L H⊥∀ ∈ ⊂  и F H ∗∀ ∈ ,                (2.135) 
 

что непосредственно вытекает из (2.134) и (2.133). 
Другими словами, 

 

ˆKer( ) = Ker дляF F L F H⊥ ∗− ∀ ∈ .                   (2.136) 
 

Оценивание точности. Приведём основные положения о точности 
решения задач коллокации, полагая пока для простоты, что ошибки изме-
рения функционалов пренебрегаемо малы. 

Начнём с (локальной) задачи коллокации № 1. Цель этой задачи, как 
отмечалось в пункте 2.4.1., состоит в определении такой аппроксимации 

F̂  для искомого функционала F , которая отвечает условию оптимально-
сти (2.89).  Такая аппроксимация найдена в виде (2.119). Точность её, 

естественно, характеризуется расстоянием ˆF F
∗

−  между F  и F̂  по 

метрике того пространства, элементами которого являются функционалы 
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F  и  F̂ , то есть по метрике гильбертова пространства H ∗ . Знание вос-
производящего ядра ( , )K ⋅ ⋅  для исходного гильбертова пространства H  
позволяет сравнительно просто вычислить указанное расстояние. 

Теорема 5. Мера близости ˆF F
∗

−  приближенного функционала F̂  

относительно соответствующего истинного функционала F определя-
ется формулой: 

 
2

1,1 1, , ,1
ˆ ( , ) ( , ) ( , ) ( , )T L

n n n n
F F K F F K L F K L L K F L

∗ −− = − ⋅ ⋅ =  

1,1 1, ,1
( , ) ( , )T

n n
K F F K L F a= − ⋅ .                              (2.137) 

 

Последнее равенство здесь записано в терминах (2.127). 
Доказательство можно найти в работе [5]. 
Подчеркнём, что мера точности (2.137) не зависит от конкретной 

функции f  из H , на которой ищется значение функционала F , а зави-
сит только от структуры используемого гильбертова пространства H   
(а именно, от его воспроизводящего ядра), структуры аппроксимирующе-
го F  и заданных L  функционалов. 

Величина 2ˆF F
∗

−  уменьшается с увеличением n в силу положитель-

ной определенности квадратичной формы, вычитаемой в (2.137) (это явля-
ется следствием положительной определенности воспроизводящего ядра, 
см. (2.20)). 

Найденный функционал F̂  позволил нам приписать искомому числу 
( )F f , то есть значению F  на теперь уже конкретной, но неизвестной 

функции f H∈ , разумное приближение ˆ ( )F f  в соответствии с формулой 
(2.120). В общем случае ( , 1,2,..., )iF L i n≠ = , очевидно, ˆ( ) ( )F f F f≠   
и число 

 

,
ˆ ˆ( ) ( ) ( )( )F f F f F f F F f∆ = − = − ,                   (2.138)  

 

представляет собой истинную ошибку аппроксимации. 
Следующая теорема позволяет вычислить предельную ошибку такой 

аппроксимации. 
Теорема 6. Истинная ошибка (2.138) аппроксимации числа ( )F f  чис-

лом ˆ ( )F f , полученным по правилу (2.120), удовлетворяет неравенству 



 

132 

22 1/2
,

ˆˆ ˆ( )( ) ( )F f F F f F F f f
∗

∆ = − − ⋅ − ,            (2.139) 
 

где ˆF F
∗

− определяется формулой (2.137); 

f̂  – норма нормального решения f̂  глобальной задачи коллокации  

(№ 2) определяется формулой 
 

2 1
,1, ,1

ˆ ( , )T
n nn n

f l K L L l−= ⋅ ⋅ ;                                 (2.140) 

 

где   –  норма изучаемой функции f H∈  должна быть известной. 
При этом, согласно (2.16), 

 

,
ˆˆ

F f F F f f
∗

∆ − ⋅ − .                              (2.141) 
 

На основании соотношений (2.104) и (2.105), 
 

ˆ ˆ ˆ ˆ: ( ) + ( )f H f = f f f f f f∀ ∈ − ⇒ − ⊥ ,                   (2.142) 
 

и потому справедлива обобщенная теорема Пифагора: 
 

2 22 ˆ ˆf f f f= + − .                                 (2.143) 

 
Заметим, что иногда более полезной оказывается иная форма неравен-

ства (2.139): 
 

{ } { } { }1 1/22ˆ( ) ( ) ( , ) ( , ( , )T
i i j jF f F f f F K F L K L L K F L

−∗ − ⋅ − 
 

 .  (2.144) 

 

Следующая теорема позволяет интерпретировать критерий точности 
аппроксимации типа (2.137) в терминах истинной ошибки типа (2.138). 

Теорема 7. Квадрат нормы разности искомого функционала F  и его 
оптимальной оценки F̂ , дающий меру точности оценки F̂  в квадратич-
ной метрике пространства H ∗ , совпадает по величине с истинной 
ошибкой оптимальной аппроксимации значения функционала F  на своём 
представителе Ff , то есть 

 
2

,
ˆ ˆ ˆ( , ) ( , ) ( ) ( )

FF F F fF F FK F FK F F f F f
∗

− = ⋅ − ⋅ = − = ∆ .     (2.145) 

f
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Теорема 8. Множество Ker L⊥ , представляющее собой n-мерное под-
пространство исходного гильбертова пространства H , имеет воспро-
изводящее ядро П ( , )K A B  вида 

 
1

П 1, , ,1
( , ) ( , ) ( , ) ( , )T

n n n n
K A B K L A K L L K B L−= ⋅ ⋅ .                   (2.146) 

 

Понятно, что, если воспроизводящим ядром (2.146) подействовать на 
функцию f  из H , то получится проекция Пf  этой функции на Ker L⊥ , 
то есть 

 

П
ˆ:( ( , ), )) П ( ) ( )Bf H K A B f(B = f A = f A∀ ∈ .           (2.147) 

 

Это непосредственно вытекает из соотношений (2.142). 
Остаточное воспроизводящее ядро 0 ( , )K A B  для KerL  имеет вид 

 

0 П( , ) ( , ) ( , )K A B K A B K A B= − .                       (2.148) 
 

Действительно, поскольку, в силу (2.104), применима теорема 2.21. 
Сопряженное пространство H ∗ , в соответствии с выражением (2.104), 

также разбивается, подобно (2.142), на два взаимно ортогональные под-
пространства 

 

(Ker ) (Ker )H L L∗ ⊥ ∗ ∗= ⊕ .                          (2.149) 
 

При этом 
 

ˆ ˆ(Ker ) , ( ) (Ker )F L F F L⊥ ∗ ∗∈ − ∈ ,                   (2.150) 
 

и 
 

ˆ ˆ ˆ ˆ( ), ( )F F F F F F F= ⊕ − ⊥ − ,                       (2.151) 
 

что уже использовалось при доказательстве теоремы 5. Поэтому имеет ме-
сто теорема Пифагора: 2 22 ˆ ˆF F F F

∗ ∗∗ = + − , где 
 

2 22
П 0

ˆ ˆ( , ), ( , ), ( , )F K F F F K F F F F K F F
∗ ∗∗ = = − = .   (2.152) 
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Последняя формула представляет собой тоже самое, что и формула 
(2.137). 

Формулы (2.137), (2.139) и (2.140) являются рабочими формулами для 
оценивания точности решения задач коллокации в наиболее реальной для 
практики ситуации, когда число n исходных линейно-независимых функ-
ционалов конечно. При этом важно, что, как уже отмечалось выше, вели-
чина 2ˆF F

∗
−  уменьшается с увеличением n . Однако, с увеличением n  

ухудшается обусловленность подлежащих решению систем уравнений 
(2.118) и (2.122). Поэтому необходимо обсудить положение дел при 
n →∞  . 

Предварительно введем одно новое понятие. 
Определение. Пусть D  – некоторая ограниченная область – одномер-

ная, двумерная или трехмерная, а ε  – как угодно малое положительное 
число. Множество точек 1 2, ,..., nA A A  области D  называется ε-сетью  
в этой области, если в ε-окрестность любой точки A D∈  попадает хотя бы 
одна точка , 1,2,...,iA i n= . При этом сами точки 1 2, ,..., nA A A  называ-
ются узлами ε-сети. Ясно, что n  зависит от ε  и n →∞  при 0ε→ . 

Теорема 9. Пусть  – сепарабельное гильбертово пространство  
с воспроизводящим ядром ( , )K A B . Элементами H  служат функции 

( )f A , определенные в ограниченной области D . Пусть, далее, точки 

1 2, ,..., nA A A  образуют ε-сеть в  для заданного положительного числа 
ε; пусть, далее, 1 2( ), ( ),..., ( )nδ ⋅ δ ⋅ δ ⋅  обозначают дельта-функционалы, со-

ответствующие узлам-сети ( ( ) ( ), 1,2,..., )i if f A i nδ = = , а n̂f   – нор-
мальное решение (2.123) соответствующей глобальной задачи коллока-
ции с ( ), 1,2,..., )i il f A i n= = . Тогда, если n →∞  так, что 0ε→ , то: 

 а) сопряженные функции 1 1 2 2( , ), ( , ),...,K K A B K K A B= = ( , )...n nK K A B=  
текущей точки B , соответствующие указанным дельта-функционалам, 
образуют полную систему функций в H ; 

б) нормальное решение n̂f   сходится по норме пространства H  к ис-
тинной функции f , на которой заданы значения дельта-функционалов, 
то есть 

 

ˆ ˆlim 0n nn
f f f f при n

→∞
= ⇔ − → →∞ .                   (2.153) 

 

H

D
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В условиях доказанной теоремы истинная ошибка (2.138) решения за-
дачи коллокации также стремится к нулю, поскольку стремится к нулю 
правая часть неравенства (2.139). 

Интересно отметить, что, если искомый функционал F  есть тоже 
дельта-функционал, то задачи коллокации в условиях теоремы 9 совпада-
ют с задачами интерполяции (см. начало пункта 2.4.1). Однако решение 
этих задач классическими полиномиальными методами указанными пре-
дельными свойствами не обладают! 

Утверждение б) теоремы 9 является, по существу, следствием утвер-
ждения а) этой теоремы. Справедливо следующее более общее утвержде-
ние. 

Теорема 10. Для сходимости n̂f f H→ ∈  по метрике H  необходимо  

и достаточно, чтобы система функций { } 1i iK ∞
=

, сопряженная к исход-

ным линейно-независимым функционалам { } 1i iL ∞
=

из H ∗ (уже не обяза-

тельно дельта-функционалам!), была полна в H . 
Вопросы конкретного выбора воспроизводящего ядра для геодезиче-

ских целей обсуждаются ниже в пункте 2.4.2. 

2.4.2. Обобщение на случай  
наличия ошибок в исходных измерениях 

Обратимся вновь к уравнениям коллокации (2.99). Будем теперь пола-
гать, что правые части 1nl ×  отягощены ошибками 1n×∆ , которыми уже 
нельзя пренебрегать и которые характеризуются ковариационной матри-
цей ( ) ( )T

ijC M c∆ = ∆ ⋅∆ = , где центральный момент второго порядка 

ij ij i jc = ρ ⋅σ ⋅σ . Здесь M  – символ математического ожидания, ,i jσ σ  – 

средние квадратические значения ошибок ,i j∆ ∆ , а ijρ  – соответствующий 

коэффициент корреляции. Так что результаты измерений il  имеют струк-
туру 

 

 ( )i i i i il L f l= + ∆ = + ∆ ,                                 (2.154) 
 

где истинные значения iL H ∗∈  при 1,2,...,i n= . Чтобы отметить это, соот-
ветствующий вектор измерений будем сверху помечать символом ∼.  

В указанной ситуации неразумно отыскивать оценку f̂  решения f  за-

дачи коллокации среди элементов множества L l−  , как это рекомендовано 
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в пункте 2.4.1. В самом деле, искомая функция f H∈ , вследствие ошибок 
измерений i∆  значений ( )iL f , не будет удовлетворять, вообще говоря, 

уравнениям (2.99). Значит, / .fl L−∈
∼

 В этом пункте описывается подход к 
решению задач коллокации соединяющий в себе идеи классического ме-
тода наименьших квадратов и метода коллокации, рассмотренного в пунк-
те 2.4.1. Этот подход, называемый среднеквадратической коллокацией, 
алгоритмически мало отличается от уже изложенного, но позволяет осла-
бить влияние ошибок измерений, осуществляя своего рода фильтрацию. 

Начнем с решения глобальной задачи коллокации № 2. Очевидно, ре-
шение ˆ ( )df ⋅  по-прежнему имеет смысл отыскивать в подпространстве 

Ker L H⊥ ⊂  (см. (2.104)), поскольку в результатах измерений l  содер-
жится информация лишь о проекции ( )f ⊥ ⋅  искомой функции ( )f ⋅  на 

Ker L⊥ . Проекция же 0 Kerf L∈  функции f  «не чувствуется» данным 

набором функционалов 1nL × , поскольку, согласно (2.103), 
 

 0( ) 0L f = .                                          (2.155) 
 

Будем полагать, что исследуемая функция f  может быть отнесена к 
функциональному гильбертову пространству H  с воспроизводящим яд-
ром ( , )K A B . Согласно теореме 4, базисом подпространства Ker L H⊥ ⊂
служит набор n  линейно-независимых функций 

 

{ }1 2 1
( , ), ( , ),..., ( , ) ( , )T

n n
K L B K L B K L B K L B

×
= . 

 

Решение ˆ
df  глобальной задачи методом средней квадратической кол-

локации по определению ищется под условием: 
 

 2 1( ) min, KerT
Hf v C v f L− ⊥

∆+ → ∈ .                     (2.156) 
 

где C∆  – ковариационная матрица ошибок измерений; 

  v  – вектор уклонений от результатов измерений l , соответствующий 
произвольной функции f : 

 

 ( )v L f l= −  .                                             (2.157) 
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Для решения вариационной задачи (2.156) нам понадобится следую-
щее известное из линейной алгебры правило для подсчёта квадрата нормы 
элемента евклидова пространства в случае, когда элемент задан своими 
коэффициентами разложения по базису: если 

1
( , )

n
K L B
×

 определяет базис 

подпространства Ker L⊥  и 1( ) ( , )n
i i if B a K L B== ∑

 
представляет собой 

произвольный элемент из Ker L⊥ , то 
 

 2 T
Hf a Ga+ ,                                        (2.158) 

 

где G , в соответствии с (2.115), является матрицей Грама с элементами 
 

 ( ) ( ( , )) ( , )ij i jG g K L L K L L= = = .                (2.159) 
 

Если, в частности, базис ортогонален, то матрица Грама G  оказывает-
ся диагональной (и даже единичной, если базисные элементы к тому же 
нормированы). Формула (2.158) позволяет легко вычислить квадрат нор-
мы элемента из пространства Ker L⊥ . При этом вектор уклонений (2.157) 
может быть найден по формуле: 

 

 v Ga l= −  .                                         (2.160) 
 

Чтобы убедиться в этом, подставим в (2.157) вместо f  разложение

1( ) ( , )n
i i if a K L=⋅ = ⋅∑  функции по базису подпространства Ker L⊥   

и воспользуемся обозначением (2.112). Получим 
 

1 1
( ( , )) ( , )

n n
i i j j i j j j i

j j
v L a K L l a L K L l

= =
= ⋅ − = ⋅ − =∑ ∑ 

 
 

 
1

( , )
n

j j i i
j

a K L L l
=

= −∑  .                                 (2.161). 

 

Матричная запись этого и есть равенство (2.160). 
Второе слагаемое в левой части записи (2.156) для любой функции f  

из Ker L⊥ , представленной разложением по базису, можно вычислить по 
формуле 
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 1 1( ) ( )T T Tv C v a G l C Ga l− −
∆ ∆= − −  .                     (2.162) 

 

Теорема 11. Решение глобальной задачи методом среднеквадратиче-
ской коллокации представляет собой линейную комбинацию представи-
телей исходных функционалов 

 

1 1
ˆ ( ) ( , )T

n n
f K L b

× ×
⋅ = ⋅ ,                                      (2.163) 

 

где b  – столбец корней системы нормальных уравнений 
 

 
1 1

( ( , ) )
n nn n n n

K L L C b l∆
× ×× ×

+ =  .                                (2.164) 

 

Поэтому 
 

 
1 1

ˆ ( ) ( )T

n n
f l

× ×
⋅ = Λ ⋅  ,                                      (2.165) 

 

где ( )Λ ⋅  является решением системы уравнений 
 

 
1 1

( ( , ) ) ( ) ( , )
n nn n n n

K L L C K L∆
× ×× ×

+ Λ ⋅ = ⋅ .                         (2.166) 

 

Заметим, что оценки среднеквадратической коллокации (2.164), в от-
личие от чистой коллокации (2.123), не воспроизводят исходные измере-
ния, то есть 

 

 ˆ( ) 0, 1,2,..., ,i i iL f l v i n− = = ≠                           (2.167) 
 

так как бессмысленно копировать значимые погрешности (сравните  
с (2.94)). 

Точность оценки (2.163) может быть вычислена по формуле 
 

2 1ˆ ( , ) ( ( , )) ( , ) ) ( ( , ))T
i i i iF F K F F K L F K L L C K F L

∗ −
∆− = − ⋅ + ⋅ ,     (2.168) 

 

которая при 0C∆ =  совпадает с (2.137). 
Если 0C∆ = , то и решение глобальной задачи методом среднеквадра-

тической коллокации совпадает с нормальным решением f̂  (2.123) мето-
дом «чистой» коллокации. 
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2.4.3. О выборе воспроизводящего ядра 

Мы рассмотрели вопросы решения задач коллокации в любом задан-
ном гильбертовом пространстве H  с воспроизводящим ядром. Для гео-
дезических целей гильбертово пространство необходимо выбрать таким 
образом, чтобы оно непременно содержало в себе возмущающий потенци-
ал Земли, поскольку, как показано в параграфе 2.1., любые геодезические 
измерения представляют собой линейные или линеаризованные функцио-
налы на потенциале. 

При решении глобальных задач физической геодезии целесообразно 
пользоваться гильбертовым пространством H  функций, регулярных на 
бесконечности и гармонических во внешнем пространстве относительно 
сферы Бьерхаммара (Bjerhammar, [13]), целиком расположенной в теле 
Земли. Известно, что реальный потенциал T  не принадлежит такому про-
странству, но, согласно известной теореме Рунге-Крарупа [3, с. 56], [2,  
с. 55], «множество потенциалов, регулярных вне сферы Бьерхаммара, со-
ставляет плотное подмножество множества потенциалов, регулярных вне 
Земли». Поэтому T  может быть аппроксимирован функциями из H как 
угодно точно. Этому пространству можно назначить воспроизводящее яд-
ро, поскольку условия для этого, согласно теореме 1, достаточно необре-
менительны и, практически, всегда выполняются.  Используя указанные  
в параграфе 2.2. шаровые функции как ортогональный базис этого про-
странства, и, опираясь на теоремы 2.19 и 2.36, можно получить воспроиз-
водящее ядро в виде 

 

 
12

2
2

2 1( , ) ( ), cos
4

n

n n
n

n RK P P b P v v
rrR

+
∞

=

 +′ = = ψ  ′π  
∑ ,       (2.169) 

 

где ( )nP ⋅  – полиномы Лежандра степени n ; 

ψ  – сферическое расстояние между точками P  и P′ ; 
r  и r′  – расстояния от начала координат до этих точек, а неотрица-

тельные коэффициенты nb  отражают различные возможности выбора 
воспроизводящего ядра. 

Знание воспроизводящего ядра гильбертова пространства H  позволя-
ет легко получить воспроизводящее ядро какого-нибудь другого гильбер-
това пространства, которому принадлежит какая-нибудь другая транс-
форманта гравитационного поля. Для этого достаточно подействовать со-
ответствующим функционалом на воспроизводящее ядро дважды: один 
раз как на функцию первой точки, а второй раз – как на функцию второй 
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точки. Например, для аномалии силы тяжести, которая, как известно,  
в сферической аппроксимации определяется функционалом 

2 ,i
Tg T
r r

∂
∆ = − − + ∆

∂
 имеем 

 

 
12 2

2

2

( 1)( , ) (cos )
i

g i i
i

i RK P P P
rr rr

+
∞

∆
=

 −′ = σ ψ  ′ ′ 
∑ .         (2.170) 

2.4.4. Изоморфизм между гильбертовым  
пространством и случайным полем 

В принципе, можно работать с любым воспроизводящим ядром. По 
форме ничего не меняется: и критерии оптимальности (2.90), и характери-
стики точности (2.137) представляют собой нормы избранного простран-
ства, и задача решается под естественным условием минимизации этих 
норм. Однако разные гильбертовы пространства придают разный смысл 
норме и, следовательно, разный смысл мере аппроксимации. Поэтому 
желательно так выбрать гильбертово пространство, чтобы упомяну-
тые критерии совпадали (или почти совпадали) с вероятностно-
статистическим понятием среднеквадратических ошибок. 

Оказывается, что это можно сделать (по крайней мере, приближённо), 
благодаря существующему изоморфизму между функциями, определен-
ными на D  и заполняющими гильбертово пространство H   
с в. я. ( , )K P P′ , и реализациями случайного поля ( , )Dξ ω , определенны-
ми при каждом элементарном исходе ω  на этом же множестве D . Вос-
производящее ядро ( , )K P P′  при этом играет роль автоковариационной 
функции данного поля. 

В самом деле, предположим, что в (2.169) 
 

 
2

24
2 1n n

Rb
n
π

= σ
+

,                                         (2.171) 

 

где 2
nσ  – степенные дисперсии возмущающего потенциала, то есть сред-

неинтегральные значения квадратов сферических функций степени n  на 
сфере с радиусом R , равным среднему радиусу Земли, 
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n nm

m l

GM a
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 σ =  
 

∑ .                                (2.172) 
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Это означает, что в качестве воспроизводящего ядра взята автоко-
вариационная функция ( , )K P P′  возмущающего потенциала на сфере 

r r R′= = . Тогда скалярное произведение в H ∗  двух функционалов 1L   

и 2L  на искомом потенциале приобретает смысл ковариации 

1 2 1 2cov( , ) ( , )l l M l l=  между значениями 1l  и 2l  этих функционалов на 
потенциале, то есть 

 

 *
1 2 1 2 1 2 1 2( , ) ( , ) cov( , ) ( )L L K L L l l M l l= = = ⋅ ,                (2.173) 

 

где любой результат il  измерений (после удаления нормальной составля-

ющей) трактуется как значение il  некоторого ограниченного линейного 

(или линеаризованного) функционала iL  на возмущающем потенциале 

T H∈ плюс неизбежная случайная ошибка i∆ , то есть 
 

 ( )i i i i il l L T= + ∆ = + ∆ ,                               (2.174) 
 

где 1,2,...i =  – номер измерения; 
M  – символ математического ожидания. 
Поэтому, в частности, 

 

 2 2 2( , ) ( ) ( )i i i i iL K L L M l l∗ = = = σ ,                       (2.175) 
 

где 2 ( )ilσ  – дисперсия величины il . 

Следовательно, мера точности 
2ˆF F
∗

− , определяемая по формуле 

(2.137), представляет собой дисперсию ошибки ˆ( ) ( )F f F f− , а величина 

ˆF F
∗

− есть среднеквадратическое значение этой ошибки. Выражения 

вида ( , )i jK L F  в (2.118) получают смысл взаимной ковариации между со-

ответствующими значениями, а (2.170) автоковариационная функция ано-
малии силы тяжести. 

В результате описанные методы решения задач коллокации совпадают 
с известными в ковариационной теории случайных функций методами оп-
тимального линейного прогноза. 

Так, любой функционал на возмущающем потенциале в случае «чи-
стой» коллокации выглядит, согласно (2.123), следующим образом: 
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 1ˆ ( ) ( ( , )) ( ( , ))T
j j i iF T K L F K L L l−= ⋅ ⋅ .                    (2.176) 

 

Другими словами, надо решить систему n  нормальных уравнений 
 

 
,1 ,1,

( ( , ))i j
n nn n

K L L b l⋅ = ,                                   (2.177) 

 

и тогда оптимальная оценка любого функционала на возмущающем по-
тенциале определяется следующей простой формулой 

 

 
1

ˆ ( ) ( , )
n

j i i j
i

F T b K L F
=

= ⋅∑ .                               (2.178) 

 

В частности, оценку самого возмущающего потенциала в произволь-
ной точке P′  можно представить в виде линейной комбинации или пред-
ставителей исходных функционалов, или самих исходных функционалов, 
то есть 

 

  
1 1

ˆ( ) ( , ) ( )
n n

i i i i
i i

T P b K L P P l
= =

′ ′ ′= ⋅ = Λ ⋅∑ ∑ .                 (2.179) 

 

Соотношения (2.178), (2.179) остаются, согласно теореме 11, справед-
ливыми и в случае среднеквадратической коллокации. Надо только для 
определения решать систему нормальных уравнений или относительно 
чисел b , 

 

 
1 1

( ( , ) )
n nn n n n

K L L C b l∆
× ×× ×

+ =  ,                               (2.180) 

 

или относительно функций ( )P′Λ  
 

 
1 1

( ( , ) ) ( ) ( , )
n nn n n n

K L L C P K P L∆
× ×× ×

′ ′+ ⋅ Λ = .                      (2.180) 

 

При этом элементы ( ( , ))i jK L L  матрицы ( , )K L L  можно трактовать 

как элементы автоковариационной матрицы вектора измерений ,l  число 
( , )i jK L F  – как взаимную ковариацию cov( ( ), ( ))i jL T F T  между i-тым ре-

зультатом измерений и j-той искомой величиной, а ( , )iK L P′  – как взаим-
ную ковариацию между i-тым результатом измерений и значением потен-
циала в точке P′ . 
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Остаточное воспроизводящее ядро типа (2.148), то есть 
 

 1
0 ( , ) ( , ) ( ( , )) ( ( , )) ( , )TK P P K P P K L P K L L K P L−′ ′ ′= − ⋅ ⋅ ,       (2.182) 

 

представляет собой автоковариационную функцию потенциала, остаточ-
ного после того, как оценка (2.179) отнесена к референц-потенциалу. 

Строго вычислить ковариационную функцию по формуле (2.169) прак-
тически, конечно, невозможно, поскольку необходимые для этого степен-
ные дисперсии известны лишь до конечной степени N , причём прибли-
жённо. Остальные степенные дисперсии приходится моделировать так, 
чтобы полученный ряд оказался сходящимся. Одной из простейших оценок 
соответствующей асимптотики является эмпирическое «правило Каулы» 

 

 
10

2
3

101,6n n

−
σ 

,                                          (2.183) 

 

где 2
iσ  – модельные степенные дисперсии.  

На спутниковых высотах затухание с ростом степени усиливается за 
счёт появления дополнительного коэффициента 1( / )nR r + . 

Ковариационная функция глобального возмущающего потенциала, со-
ответствующая одной из наиболее удачных моделей, получена в работе 
[38] и записывается в следующем виде: 

 
12

2
( , , ) ( ) (cos )

n
N

T n n
n

RK r r a d T P
rr

+

=

 
′ψ = ψ +  ′ 

∑  

 

 
12

1
(cos )

( 1)( 2)( )

n
B

n
n N

RA P
n n n b rr

+
∞

= +

 
+ ψ  ′− − +  
∑ .      (2.184) 

 

гдеψ – сферическое расстояние между двумя точками, cos sin sin ′ψ = ϕ ϕ +
cos cos cos( )′ ′+ ϕ ϕ λ −λ ;  

 r  и r′   – расстояние от начала координат до этих точек; 
 ( )nd T  – степенные дисперсии погрешностей низкочастотной части 

потенциала до N  включительно; 
 R  – средний радиус Земли, BR R<  – радиус сферы Бьерхаммара; 
 (cos )nP ψ  – полиномы Лежандра n-ой степени. 
Число b  обычно выбирается равным 4, но иногда, чтобы максимально 

приблизиться к низким степенным дисперсиям, достигает 24. Натуральное 
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число N  должно быть названо пользователем, а константы A  и BR  явля-
ются параметрами ковариационной функции и подлежат определению по 
результатам корреляционного анализа эмпирических данных. 

Если степенные дисперсии id   неизвестны, то перед первым слагаемым 
в (2.184) ставится положительный множитель пропорциональности a , по-
лагая, что спектр шумов пропорционален спектру реального поля. При 
этом a  трактуется как дополнительный параметр, подлежащий определе-
нию по результатам корреляционного анализа эмпирических данных. Па-
раметры определяются последовательными приближениями методом 
наименьших квадратов. 

Соответствующую автоковариационную функцию аномалии силы тя-
жести можно, согласно (2.170), записать в виде 
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Если константа A  в (2.184) имеет размерность 
22

2
м
с

 
  
 

, а ( )D g∆  

в (2.185) имеет размерность мГал2, то на нулевой высоте  
 

 2( )
63,71

AD g∆ ≈ .                                           (2.186) 

 

При работе в локальных районах широко используется статистиче-
ская коллокация, когда воспроизводящее ядро полностью заменяется (эм-
пирически полученной и аналитически аппроксимированной) ковариаци-
онной функцией аномалии силы тяжести, и вся обработка разнородных 
измерений базируется на принципе оптимального статистического про-
гноза в свете классической теории Винера-Колмогорова. Необходимая 
процедура описана во многих статьях и учебных пособиях, см., например, 
[2, 39], и мы не будем на этом останавливаться. Отметим только, что при 
ковариационном анализе гравитационного поля, как правило, предполага-
ется изотропность поля, то есть предполагается, что ковариация для двух 
точек исследуемой области зависит только от расстояния между этими 
точками, что, конечно, имеет место далеко не всегда. В работах [40, 41], а 
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затем и в [42, 43] рассмотрены методы и использование ковариационного 
анализа нестационарных полей. 

2.4.5. Заключительные замечания 

Заключительные замечания: 
– по целям и задачам методы разномасштабного моделирования 

(РММ) и среднеквадратической коллокации (СКвК) имеют много общего, 
поскольку в конечном счете обе методики стремятся адекватно оценить 
значения определённых функционалов на геопотенциале и замоделиро-
вать (аппроксимировать) определённые трансформанты ГПЗ. Более того, 
если в методе РММ коэффициенты масштабирующих функций (2.47) 
назначать согласно (2.53), то масштабирующую функцию, естественно, 
трактовать как ковариационную функцию ГПЗ, и РММ и статистическая 
трактовка коллокации просто совпадают; 

– выбор в методе РММ масштабирующих коэффициентов nb  по фор-
муле (2.53) полностью соответствует по идее выбору воспроизводящего 
ядра в методе СКвК, совпадающего с ковариационной функцией геопо-
тенциала; 

– как разномасштабное моделирование, так и среднеквадратическая 
коллокация основаны на линейной аппроксимации с использованием вос-
производящего ядра (см. (2.46) и (2.169), которое связывает искомые па-
раметры с исходными данными. При этом исходные данные могут охва-
тывать результаты измерений различного типа (гравиметрия, топография 
и др.). Однако в РММ может применяться уравнение (2.63) отдельно для 
каждого типа исходных данных (см. (2.56)), в то время как в СКвК все ис-
точники ковариационной матрицы должны рассматриваться в одном и том 
же уравнении (2.166), что приводит к необходимости решать слишком 
большие системы уравнений. В подобных ситуациях рекомендуется поль-
зоваться методом конечных элементов [36, 44] или такими специальными 
численными методами коллокации, как последовательная коллокация  
и быстрая коллокация [5, 33, 45, 46]; 

– и в том и другом варианте, оценивание нужных параметров выполня-
ется методом наименьших квадратов, но в методе СКвК точность оконча-
тельных результатов оценивается непосредственно (2.175), а в методе 
РММ сначала оценивается точность вспомогательных параметров (2.70); 

– СКвК, как правило, требует предварительной глобальной редукции 
ГПЗ, то есть удаления его трендовой низкочастотной части. Но, в конеч-
ном счёте, удалённая часть поля должна быть восстановлена, что может 
служить источником дополнительных погрешностей. В методе РММ такая 
процедура используется в гораздо меньшей степени; 
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– в численных методах широко используется идея интерполяции и ап-
проксимации с помощью гладких функций – сплайнов, см., например,  
[21, 47]. Формально, сплайном k-го порядка называется функция, у кото-
рой минимальна норма k-ой производной. Например, при 3k =  функция 
имеет минимальную кривизну и называется кубическим сплайном. Отме-
тим, что обеспечение гладкости интерполяции путём минимизации норм 
производных является сутью не только сферических сплайнов, но и изло-
женной выше теории коллокации. Достаточно вспомнить, что оптималь-
ное решение (2.123) задачи коллокации имеет, согласно (2.101), наимень-
шую норму в соболевском пространстве по сравнению с любыми другими 
возможными вариантами. Величину такой нормы можно интерпретиро-
вать как определённую меру гладкости и дифференцируемости сигнала. 
Поэтому известное свойство, например, упомянутых кубических сплайнов 
определять интерполяционную функцию наименьшей кривизны, по суще-
ству, справедливо и в гораздо более общих задачах коллокации. Если  
в методе коллокации отказаться от попыток приблизить используемое 
воспроизводящее ядро к ковариационной функции изучаемого сигнала 
(обычно в виде возмущающего геопотенциала), то мы получим то, что 
принято называть сферическими сплайнами.  Незначительные различия – 
только в терминологии; 

– в геостатистике известны некоторые разновидности метода коллока-
ции. Наиболее известным является так называемый кригинг-метод 
(Kriging), названный в честь его автора – южно-африканского горного ин-
женера Danie Krige. Основное отличие от статистической коллокации со-
стоит в отсутствии свободного члена в исходной постановке линейного 
прогноза. Это приводит к необходимости пользоваться разными формами 
кригинга (простой, стандартный, универсальный) в зависимости от име-
ющейся информации о среднем значении исследуемого поля, и при отсут-
ствии такой информации может давать смещённые результаты. Если ис-
следуемое поле центрировано, то кригинг-метод и коллокация дают иден-
тичные результаты [48, с. 162]. 

2.5. Вариационный метод регуляризации 

 Обратимся вновь к уравнениям коллокации (2.174) и будем по-
прежнему полагать, что правые части 

1n
l
×

 отягощены ошибками 
1n×
∆ , кото-

рыми нельзя пренебрегать и которые характеризуются ковариационной 
матрицей ( ) ( )T

ij
n n
C M c∆
×
= ∆ ⋅∆ = , где центральный момент второго порядка 

ij ij i jc = κ ⋅σ ⋅σ . Здесь M  – символ математического ожидания, ,i jσ σ  – 



 

147 

средние квадратические значения ошибок ,i j∆ ∆ , а ijκ  – соответствующий 
коэффициент корреляции. Предположим, для простоты, что все исходные 
измерения l  имеют одинаковую физическую размерность, например, 
мГал, а систематические ошибки отсутствуют ( ) 0, 1,2,...,iM i n∆ = = . 

В таком случае ковариационную матрицу ошибок удобно представлять 
в виде C d Q∆ = ⋅ , где d  – обычно неизвестная дисперсия единицы веса,  
а элементы ijq  матрицы «обратных весов» Q  предполагаются известными 
и имеют вид 

 

1 1ij i j
ij ij

i j
q

d w w

κ ⋅σ ⋅σ
= = κ ⋅ ⋅ , 

 

где 2i
i

dw =
σ

 – вес погрешности i∆ . Соответствующий вектор измерений 

будем обозначать dl . 
Как следует из теории чистой коллокации, при неограниченном увели-

чении равномерно распределённых измерений оценка потенциала T̂ , вы-
численная по формуле (2.179),  сходится по норме H  к  искомому потенци-
алу T H∈  в  случае безошибочности исходных данных l (см. теорему 9). 
Это является одной из веских причин принимать T̂  в качестве решения 
глобальной задачи коллокации. Существуют, однако, некоторые реальные 
обстоятельства, способные, если не принять необходимые меры, поставить 
под сомнение свойство (2.153) оценки T̂ .  Дело в том, что обусловленность 
матрицы ( , )K L L  с ростом n  непременно ухудшается. Это означает, что 
непренебрегаемые ошибки измерений ∆  и неизбежные ошибки округления 
при счете могут значительно исказить корни уравнений (2.164), что,  
в свою очередь, приведет к  ошибкам в T̂ , возрастающим с увеличением 
n. Кроме того, влияние ошибок измерений, выполненных на спутниковых 
высотах, сильно возрастает при опускании к поверхности Земли. 

Сказанное заставляет модифицировать среднеквадратическую колло-
кацию и стараться отыскивать такую оценку возмущающего потенциала 
(будем обозначать её T̂α ), которая, во-первых, гарантировала бы сходи-
мость (2.153), и, во-вторых, позволяла согласовывать вычисленное реше-
ние T̂α   с ошибками исходных данных ∆ : чем меньше ошибки ∆ , тем 

ближе T̂α    должна быть к оценке T̂ , полученной в условиях полного от-
сутствия шумов. Такие оценки называются регуляризованными. 
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Согласно [30], регуляризованным решением уравнений (2.174) называ-
ется такая функция T̂ Hα ∈ , зависящая от dl , которая удовлетворяет усло-
вию: 

 

 
0

ˆ ˆ 0
H

d

T Tα
→

− → ,                                     (2.187) 

 

где T̂  – решение глобальной задачи коллокации, полученное по безоши-
бочным исходным данным 0l , состоящим из n  чисел. 

Таким образом, если найти метод получения регуляризованного реше-
ния, то, в силу (2.187) и (2.153), T̂α  будет сходиться по норме H  при 

0d →  и 0n →  к истинному возмущающему потенциалу T , то есть 
 

ˆlim 0
d n H

T Tα
→∞ →∞

− = . 

 

Предположим, что нам известна дисперсия единицы веса 2d = σ оши-
бок i∆ . Тогда один из наиболее известных методов регуляризации состоит 
в выборе в качестве решения глобальной задачи коллокации такой функ-
ции ˆ KerT Lα ∈ ⊥ , которая согласуется с точностью исходных данных d  
следующим образом: 

 

ˆ ˆˆ ˆ( ( )) ( ( ))T T
d dl L T W l L T V W V d

n n
α α α α− ⋅ ⋅ − ⋅ ⋅

≡ = ,          (2.188) 
 

где 1W Q−= – матрица весов измерений; 
 Vα  – столбец уклонений ˆ( ), 1, 2,...,i i iv l L T i nα α= − = .  

Другими словами, отыскание нужной оценки T̂α  сводится к решению 
классической вариационной задачи на условный минимум: 

 

 

2 ( , )

ˆ ˆ( ( )) ( ( )) .

T
H

T T
d d

T b K L L b min

l L T W l L T V W V d
n n

α α α α

= ⋅ ⋅ ⇒

− ⋅ ⋅ − ⋅ ⋅
≡ =

            (2.189) 

 

Решение имеет стандартную структуру (2.179): 
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1

ˆ ( ) ( , )
n

i i
i

T P K L P bα α
=

′ ′= ⋅∑ ,                                 (2.190) 

 

где ibα  являются корнями системы n  линейных уравнений 
 

 
,1, , ,1

( ( , ) ) d
nn n n n n

K L L Q b l+α ⋅ ⋅ =  .                                  (2.191) 

 

Здесь положительное безразмерное число α  называется параметром 
регуляризации.  Его следует подобрать так, чтобы соответствующий воз-
мущающий потенциал (2.190) обеспечивал выполнение равенства (2.188), 
хотя бы приближённо. 

Левая часть равенства (2.188) определяет меру близости α  между из-
меренными и вычисленными значениями исходных функционалов в n-
мерном евклидовом пространстве nE  и называется невязкой. Невязка 
представляет собой некоторую функцию ( )ρ α  параметра регуляризации: 

 

 
1/2

ˆ( ) ( )
n

T

d E

V W V l L T
n

α α
α

 ⋅ ⋅
ρ α = = − 

  
.                     (2.192) 

 

В работе [29] доказывается, что невязка на промежутке (0, )∞  моно-

тонно возрастает от 0 до 
n

d E
l . При этом выполняется естественное усло-

вие 
n

d E
d l<  , означающее, что результаты измерений il  содержат по-

лезную информацию ( )i il L T= , то  существует  единственное  значение 
0,α >  при котором выполняется условие (2.188). 

Оптимальное значение любого функционала F H ∗∈  на возмущающем 
потенциале находится, как обычно, действием этого функционала на оп-
тимальную оценку T̂α . 

Что касается практической реализации описанного вариационного ме-
тода регуляризации по невязке, то мы отметим здесь только следующий 
простейший итерационный подход. 

Зададимся какой-нибудь убывающей последовательностью положи-
тельных чисел mα ,  например, /m const m, m = 1,2,...,α =  и будем последо-
вательно решать задачу (2.189) для каждого m  до тех пор, пока не выпол-
нится с нужной точностью условие (2.188). Подробности вариационного 
метода регуляризации по невязке и другие способы выбора параметра ре-
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гуляризации, описаны в литературе, см., например, [30]. Отметим только, 
что в простейшем случае можно просто полагать dα = , что приводит  
к описанной в пункте 2.4.2. среднеквадратической коллокации. Подробно-
сти вариационного метода регуляризации и примеры геодезических при-
ложений можно найти в работах [5, 29, 49]. 

В заключение этого параграфа отметим, что в стандартных задачах об-
работки измерений об ошибках исходных данных обычно достаточно 
знать (с той или иной полнотой) только матрицу «обратных весов» 

1Q W −= , а дисперсия единицы веса ,d  как правило, заранее неизвестна  
и подлежит оценке в процессе самой обработки по формуле 

 

 
ˆ ˆˆ ˆ( ( )) ( ( ))ˆ

T T
d dl L T W l L T V W Vd

n n
α α α α− ⋅ ⋅ − ⋅ ⋅

= ≡ .             (2.193) 
 

Выполнение же регуляризации по невязке требует дополнительную 
информацию о шумах – дисперсия единицы веса должна быть известна 
заранее. 

2.6. Оптимизация основных операторов физической геодезии 

2.6.1. Вероятностная оптимизация  
интегральных операторов 

Основные задачи физической геодезии можно представить в оператор-
ном виде как Ag f= , где A  – линейный интегральный оператор, дей-
ствующий по единичной сфере ω , а g  и f  обозначают, соответственно, 
вход и выход оператора [50]. 

Примерами могут служить: 
– ( )tS ψ – оператор Стокса, преобразующий аномалию силы тяжести 

g g∆ =  в высоты геоида fζ =  
 

( ) ( ) ( ) ( )
4 4t t
R RP S g P d S g

ω
′ζ = ψ ∆ ω = ψ ∗∆

πγ πγ∫ ,              (2.194) 

 

где R  – средний радиус Земли; 
∗  – обозначение свёртки. 
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21( ) 6sin 1 5cos 3cos ln sin sin
2 2 2sin

2

tS ψ ψ ψ ψ = − + − ψ − ψ ⋅ + = ψ  
 

 

 
2

2 1 (cos )
1 n

n

n P
n

∞

=

+
= ψ

−
∑                                   (2.195) 

 

представляет собой известное ядро Стокса. Здесь ψ  – сферическое 
расстояние между точкой вычисления и текущей точкой интегрирования; 

– ( )K ψ  – оператор Хотина-Коха, преобразующий возмущение силы 
тяжести g gδ =  в высоты геоида fζ =  

 

 ( ) ( ) ( ) ( )
4 4
R RP K g P d K g

ω
′ζ = ψ δ ω = ψ ∗δ

πγ πγ∫ ,            (2.196) 
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1sin sin

2 2

n
n

nK P
n

∞

=

 
  + ψ = − + = ψ

ψ ψ +    
        

∑ ;      (2.197) 

 

– ( )
( )

dS
d

ψ
ψ

 – оператор Венинг- Мейнеса, преобразующий аномалию силы 

тяжести g g∆ =  в составляющие уклонения отвеса fξ =  или fη = : 
 

 
0 0

1 ( ) 1 ( )cos , sin
4 ( ) 4 ( )

dS dSg d g d
d dω ω

ψ ψ
ξ = ∆ α ω η = ∆ α ω

πγ ψ πγ ψ∫ ∫ ,    (2.198) 
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 23sin ln sin sin
2 2

 ψ ψ    + ψ +        
.                         (2.199) 

 

Практически, на вход преобразования поступает функция g g= + ∆ , 
где ∆  – неизбежные помехи. Естественно, возникает вопрос о влиянии 
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помех на конечный результат – выход f  и о возможности оптимизиро-
вать оператор A  в зависимости от статистических свойств входа g . 

Решение подобных задач занимает видное место в современной теории 
случайных функций. В общем случае оператор A  называется оптималь-
ным, если математическое ожидание аппроксимации выхода f  функцией 
Ag   совпадает с требуемой функцией f , а дисперсия этой аппроксимации 
минимальна по сравнению с любыми другими линейными интегральными 
операторами, действующими на g . Практически, такой оператор ищется 
по-прежнему в виде интегрального преобразования по сфере Ω , но ядро 
должно быть модернизировано. Реализацию общего алгоритма подобной 
оптимизации на примере интегрального преобразования Стокса можно 
найти, например, в работе [51]. 

В результате оптимизированное ядро получено в виде 
 

 
2

2 0

1( , ) ( ) ( )
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nl

t nl nl
n l nl nl

DS P P Y P Y P
n D d
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= =
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∑ ∑ ,              (2.200) 

 

где сферические функции ( )( ) (cos )cosk
nl nY P P k= θ λ  при l n , где k l= , но

( )( ) (cos )sink
nl nY P P k= θ λ  при l n> , где k l n= − . 

Рассмотрим частные случаи: 
1) пусть функции ( )g P∆  и ( )P∆  изотропны. Тогда, как показано в ра-

боте [52], 
2 1

n
nl

DD
n

=
+

 и 
2 1

n
nl

dd
n

=
+

, где nD  и nd  – соответствующие сте-

пенные дисперсии. Поэтому, на основании теоремы сложения сфериче-
ских функций 
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D n P S
D d n

∞

=

+
= ⋅ ⋅ ψ = ψ

+ −
∑ ;                (2.201) 

2) если возмущающие помехи отсутствуют, то есть ( ) 0P∆ ≡ , то 0nld ≡
и формула (2.201) приводит к классическому ядру Стокса (2.195). 

Итак, знание спектральных характеристик гравитационного поля и его 
помех позволяет модифицировать формулу Стокса. Смысл модификации 
состоит в том, что непосредственно в процессе интегрирования удаётся 
отфильтровывать неизбежные помехи исходной функции аномалии силы 
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тяжести. В случае отсутствия помех выведенные обобщения (2.200) сов-
падают с классическим преобразованием Стокса (2.195).   

Аналогично могут быть поставлены и решены подобные задачи приме-
нительно к другим операторным преобразованиям физической геодезии. 

2.6.2. Устойчивое суммирование рядов  
по шаровым функциям 

Особый интерес, в частности, представляет распространённая задача 
оптимального суммирования возмущённых рядов по сферическим функ-
циям (2.30) при моделировании различных трансформант ГПЗ. 

Рассмотрим среднюю квадратичную аппроксимацию гравитационного 
поля конечным рядом (2.30). Если 

 

 nl nl nla a a= + ∆ ,                                       (2.202) 
 

то погрешность аппроксимации в точке P  определяется выражением 
 

 
2 2

0 0 1 0
( ) ( ) ( )

N n n
N nl nl nl nl

N
P a Y P a Y P

∞

+
ε = − ∆ +∑∑ ∑ ∑ ,                (2.203) 

 

где первое слагаемое зависит от точности используемых гармонических 
коэффициентов (ошибка определения), а второе слагаемое обусловлено 
необходимостью пользоваться рядом конечной длины (ошибка усечения). 

Средняя дисперсия аппроксимации по всей сфере 
 

 { }2 2

0 1 0
( ) ( )

N N
N N n n n n

N
M P d D D D d

∞

+
ε = ε = + = − −∑ ∑ ∑ ,        (2.204) 

где M  – оператор математического ожидания; 
nd  – степенная дисперсия возмущающей функции; 

nD  – степенная дисперсия изучаемой функции; 
D  – полная дисперсия изучаемой функции ( )f P . 
Таким образом, оптимальное значение длины ряда N  зависит не толь-

ко от спектра возмущающей функции, но и от степени гладкости аппрок-
симируемой функции. При увеличении N  на единицу 2

Nε  изменяется на 
величину 1 1N Nd D+ +− , что, разумеется, выгодно лишь при условии 

 

 1 1N Nd D+ +< .                                          (2.205) 
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Эту ситуацию можно улучшить тем же методом оптимизации операто-
ра, как это описано выше. Для этого под A  будем понимать оператор, на 
вход которого подаётся последовательность коэффициентов nla , а выхо-
дом служит искомая функция ( )f P . Поскольку практически на вход пре-
образования подаются возмущенные коэффициенты nla , то есть основа-
ние заменить A  другим оператором A  оптимальным с точки зрения ми-
нимума дисперсии 2ε  аппроксимации. Все выкладки, приведенные в ра-
боте [51], остаются в силе. Надо лишь принять передаточную функцию 

1≡ . В результате получим следующую формулу суммирования аппрокси-
мирующего ряда: 

 

 
2

0 0
( ) ( ) ( )

n
nl nl
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 ,                        (2.206) 

 

где nla  – модифицированные коэффициенты, определяемые по формуле 
 

 nl nl nla a= δ ,                                         (2.207) 
 

где nlδ  – вспомогательный множитель, равный 
 

 ; 0< 1nl
nl nl

nl nl

D
D d

δ = δ
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 .                              (2.208) 

 

Дисперсии nlD  и nld  связаны с соответствующими степенными дис-
персиями nD  и nd  известными соотношениями 
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В случае изотропности ГПЗ индекс l  в двух последних формулах сле-
дует отбросить. 

Если в сумме (2.206) ограничиться слагаемыми со сферическими 
функциями первых N  степеней, то вместо погрешности (2.204), будем 
иметь погрешность аппроксимации 
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При увеличении N  на единицу 2
Nε  изменяется на величину 

1 1,N ND+ +−δ  что всегда выгодно. Таким образом, можно использовать весь 
эмпирический материал в виде возмущенных коэффициентов nla . 

2.7. Методы, основанные  
на быстрых преобразованиях Фурье и Хартли 

2.7.1. Непрерывные преобразования Фурье и Хартли 

Многие задачи физической геодезии, как уже отмечалось в параграфах 
2.3., 2.4., с математической точки зрения, представляют собой свёртки, то 
есть интегральные преобразования, ядро которых зависит только от рас-
стояния между точкой выхода и текущей точкой интегрирования входа. 
Практическую реализацию таких интегральных преобразований можно 
существенно облегчить, если преобразовать задачу в частотную область. 
В математике известно несколько видов непрерывных линейных преобра-
зований, которые позволяют сопоставить цифровому сигналу, заданному  
в пространственной (или временной) области, его эквивалентное пред-
ставление в частотной области. И наоборот, если известна частотная ха-
рактеристика сигнала, то обратное преобразование позволяет определить 
соответствующий сигнал в пространственной (или временной) области. 
Особенно полезными в геодезической практике оказались преобразование 
Фурье и преобразование Хартли. 

Преобразование Фурье переводит пространственную функцию ( )x t   
в частотную функцию ( )X f  посредством интегрального преобразования  
с использованием комплексной экспоненты [53–55] 

 

 [ ]( ) ( ) exp( 2 ) ( )X f x t j ft dt F x t
∞

−∞
= − π =∫ ,              (2.210) 

 

где F  – оператор прямого преобразования Фурье, 1j = − .  
Обратное преобразование [53–55] 
 

 [ ]11( ) ( ) exp(2 ) ( )
2

x t X f j ft df F X f
∞

−

−∞
= π =

π ∫ ,             (2.211) 

 

где 1F −  – оператор обратного преобразования Фурье. 
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Функция ( )X f  показывает интенсивность колебаний, соответствую-
щих различным значениям частот .f  Модуль ( )X f  есть амплитуда ко-
лебания, а аргумент – фаза, соответствующие данному значению .f  

Функция 2( )X f  называется спектральной плотностью, а ( )X f  – ампли-
тудной плотностью для исходной функции ( )x t . При этом известно, что 
образ Фурье свертки двух функций равен произведению образов Фурье 
каждой функции в отдельности (теорема о свёртке). А образ Фурье произ-
ведения двух функций в частотной области выражается сверткой соответ-
ствующих образов Фурье сомножителей (теорема о коммутативности 
свёртки) [53–55]: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y t h t x t Y f H X f d H f X d
∞ ∞

−∞ −∞
= ⇒ = η −η η = −η η η∫ ∫ ,  (2.212)  

 

и наоборот. Смещению в пространственной области соответствует умно-
жение на комплексную экспоненту в области частот, а смещению в обла-
сти частот соответствует умножение на комплексную экспоненту в про-
странственной области. 

Эти же свойства справедливы и для функций нескольких переменных, 
но всегда приходится пользоваться комплексными переменными. 

Например, пара двумерного преобразования Фурье для функций двух 
пространственных переменных (координат точки) записывается в виде 
[53–55] 

 

 ( )1( , ) ( , )
2

j ux vyG u v g x y e dx dy
∞

− +

−∞
= ∫ ∫

π
,                     (2.213) 

 

 ( )1( , ) ( , )
2

j ux vyg x y G u v e du dv
∞

+

−∞
= ∫ ∫

π
.                  (2.214) 

 

Преобразование Хартли, в отличие от преобразования Фурье, явля-
ется преобразованием чисто вещественным, что является его преиму-
ществом. Пусть, например, имеем исходную функцию времени ( )V t . Ее 
частотный спектр ( )H ω  с помощью преобразования Хартли определя-
ется формулой [56] 

 

( ) ( ) ( ) , , cos sinH V t cas t dt cast t t
∞

−∞
ω = ω −∞ < ω< ∞ = +∫ .       (2.215)  
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Обратное одномерное непрерывное преобразование Хартли имеет 
вид [56]  

 

 ( ) ( ) ( )V t H cas t d
∞

−∞
= ω ω ω∫ .                          (2.216) 

 

Таким образом, преобразования Хартли строго обратно самому себе, 
что также является его преимуществом. 

Преобразование Хартли свертки двух функций 1 2( ) ( )V t V t∗  равно [56] 
 

[ ]1 2 1 2 1 2 1 2
1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

H H H H H H H Hω ω − −ω −ω + ω −ω + −ω ω . (2.217) 
 

Для двумерной функции ( , )f x y  прямое и обратное непрерывные пре-
образования Хартли выглядят следующим образом [56] 

 

 [ ]( , ) ( , ) 2 ( )H u v f x y cas ux vy dx dy
∞

−∞
= ∫ ∫ π + ,                (2.218) 

 

 [ ]( , ) ( , ) 2 ( )f x y H u v cas ux vy du dv
∞

−∞
= ∫ ∫ π + .                (2.219) 

 

Преобразование Хартли (ПХ) свертки двух двумерных функций 
1 2(, ) (, )f f∗  равно [56] 

 

1 2 1 2
1 [ ( , ) ( , ) ( , ) ( , )
2

N H u v H u v H u v H u v− − − − − +  
 

 1 2 1 2( , ) ( , ) ( , ) ( , )]H u v H u v H u v H u v+ − − + − − .             (2.220) 

2.7.2. Дискретные преобразования и быстрые алгоритмы 

Для практических приложений важны дискретные формы преобразо-
ваний. 

Прямое и обратное преобразование Фурье ( )X k  дискретной функции 
( )x n  определяются формулами [54, 55, 57] 

 
1 1

0 0

1( ) ( ) , ( ) ( ) , 0,1, 2,..., 1
N Nnk nk

N N
n k

X k T x n W x n X k W k N
NT

− −
−

= =
= = = −∑ ∑ , (2.221) 
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где nk
NW – поворачивающий множитель (или ядро преобразования), рав-

ный 
 

 2 2 2exp cos sinnk
N

nk nkW j nk j
N N N
π π π     = − = −     

     
.            (2.222) 

 

При /2k N>  величинам ( )X k  соответствуют отрицательные частоты, 
то есть ( 1) ( 1), ( 2) ( 2)X X N X X N− = − − = −  и так далее. Следовательно, 
второй половине преобразования отвечает преобразование для отрица-
тельных значений k . Отсюда следует важное свойство: если ( )x n  – дей-

ствительные числа, то ( ) ( )X k X k∗− = , где ( )X k∗  обозначает сопряженное 
число. Следовательно, преобразование Фурье действительной последова-
тельности требует определения только /2N  комплексных величин. Недо-
стающие величины можно получить, исходя из симметрии значений пре-
образования Фурье действительной последовательности. Отметим, что 

( )x n  и ( )X k  – дискретные периодические функции. Их можно рассмат-
ривать как функции, регулярно повторяющиеся в пространстве и в обла-
сти частот, соответственно. 

Дискретное преобразование Фурье (ДПФ) и обратное ДПФ могут быть 
реализованы как умножение некоторой квадратной матрицы на входной 
вектор-столбец. Общая формула для элемента матрицы, расположенного  
в n−ом столбце и m−ой строке при 1T =  выглядит так 

 

 
1

( 1)( 1)( , ) exp 2 ,

11 , 1 .

ДПФ
m nW m n j

N

m N n N x W X
NT

−

− − = − π 
 

=   
                      (2.223) 

 

Преобразование Фурье для функций двух и более числа переменных 
можно выполнять последовательно по каждой координатной оси (строч-
ностолбцовый метод). 

Дискретное прямое и соответствующее ему обратное преобразование 
Хартли (ДПХ) определяются соотношениями [56] 

 

( ) ( )
1 11

0 0
( ) ( ) 2 / , ( ) ( ) 2 /

N N

x u
H u N f x cas ux N f x H u cas ux N

− −
−

= =
= π = π∑ ∑ ,   (2.224) 

 

где 0,1,2,..., 1;x N= −  
 0,1, 2,..., 1.u N= − . 
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ДПХ свёртки числовых последовательностей 1 2( ) ( )f x f x∗  равно [56] 
 

1 2 1 2 1 2

1 2

1( ) [ ( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( )].

H u N H u H u H u H u H u H u

H u H u

= − − − + − +

+ −
   (2.225) 

 

Заметим, что формула ДПХ свёртки упрощается, если 2 ( )H u  – четная 
функция, тогда 1 2( ) ( ) ( )H u NH u H u= . Если 2 ( )H u  – нечетная функция, то 
ДПХ свёртки равно: 1 2( ) ( ) ( )u NH u H u= − . На практике обычно использу-
ется матричная интерпретация дискретных преобразований. 

В настоящее время для вычисления дискретных преобразований Фурье 
и Хартли разработано большое количество специальных, так называемых 
быстрых алгоритмов (БПФ и БПХ), которыми полезно пользоваться  
и в геодезических целях. 

Все алгоритмы БПФ можно разделить на два вида: децимацию (проре-
живание) по времени и децимацию по частоте. Но каждая из этих двух 
форм, в свою очередь, имеет множество модификаций. Детали можно 
найти, например, в работах [54, 55, 58–60]. 

2.7.3. Приложение к численным методам  
теории Молоденского 

Покажем, что важнейшие задачи физической геодезии в рамках строгой 
теории Молоденского можно формулировать в терминах свёрток и, следова-
тельно, эффективно решать эти задачи с помощью БПФ и БПХ [54]. 

Интегральное решение задачи Молоденского 

Для иллюстрации будем пользоваться плоской аппроксимацией необ-
ходимых формул, так как большая часть спектра аномалий силы тяжести 
сконцентрирована в области коротких длин волн (менее 2 000 км), и по-
этому для ограниченной области сферическая поверхность может быть 
достаточно надёжно аппроксимирована касательной плоскостью [61]. При 
этом аномалии высот и составляющие уклонений отвеса получаются из 
соответствующих формул для сферы при R →∞ . В этом случае пределы 
функций Стокса и Коха равны, то есть lim ( ) lim ( ) 0S Nψ = ψ =  при ψ→∞
. Поэтому ядра интегралов в формулах, по которым можно вычислять 
возмущающий потенциал, аномалию высоты и компоненты уклонения от-
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веса по чистым и смешанным аномалиям аналогичны, отличие заключает-
ся только в обкладках (чистые аномалии gδ  или смешанные g∆ ). 

Следующие формулы вычисления аномалий высот имеют вид свёрток 
и позволяют пользоваться БПФ и БПХ [10, 54]: 

 

 

0
0 0

1
1 1

1 1 ,
2 2
1 1 ,...,

2 2

dx dy l
r

dx dy l
r

ζ
∑

ζ
∑

λ
ζ = = λ ∗

πγ πγ

λ
ζ = = λ ∗

πγ πγ

∫∫

∫∫
                      (2.226) 
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n
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H Hdx dy dx dy

r r −
∑ ∑

′λ −
ζ = − λ =

πγ πγ∫∫ ∫∫  

 

2 3 3
2 2

1 1 [( ) 2 (( ) )
2 4n n nl H l H H lζ − ζ − ζ′ ′= λ ∗ − λ ∗ − λ ∗ +
πγ πγ

 

 

 2 3
2( )]nH l− ζ+ λ ∗ ,                                     (2.227) 

 

где x  и y  – плановые координаты на плоскости; 
 r  − расстояние между текущей точкой интегрирования P  с нормаль-

ной высотой H ′  и фиксированной точкой A  с нормальной высотой ,H то 

есть 2 2 1/2(( ) ( ) )P A P Ar x x y y= − + − ; 

 ядро 1l r−ζ =  – горизонтальная плоскость, проходящая через точку вы-
числения A ; 

γ  – нормальное значение силы тяжести, 
 

 0 gλ = δ ,                                              (2.228) 
 

 1 03
1

2
H H dx dy

r∑

′ −
λ = λ

π ∫∫
,                                 (2.229) 

 

 2
2 1 03

1 ( , )
2

H H dx dy tg n
r∑

′ −
λ = λ + λ ρ

π ∫∫
.                  (2.230) 

 

Отметим, что ядро интегралов lζ  имеет особенность в начале коорди-
нат, которая заключается в “выкалывании” данной точки, для чего полага-
ем (0,0) 0lζ = . 
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Значительное упрощение вычислений связано с тем, что образы Фурье 
для ядра Стокса lζ  и ядра Венинг-Мейнеса ,l lξ η   можно вычислить по 
аналитическим формулам [62]: 

 

 2 2 3/2( , ) ( , )/
( )

( , ) ( , )/

l x y l x y y y
x y

l x y l x y x x
ξ ζ −

η ζ

∂ ∂        = − = +     ∂ ∂        
,             (2.231) 

 

 { } 2 2 1/2 1( , ) ( )F l x y u v
q

−
ζ = + = ,                          (2.232) 

 

 2 2 1/2( , ) 12 ( ) 2
( , )

l x y v v
F j u v j

l x y u u q
ξ −

η

       = − π + = − π     
     

,              (2.233) 

 

где ,u v  – частоты; 1j = − . 

Решение методом аналитического продолжения 

В основе другого метода лежит аналитическое продолжение аномалии 
силы тяжести, заданной на земной поверхности S , вниз к некоторой 
внутренней сфере или к уровню исследуемой точки, определение на этой 
поверхности в соответствии с теорией Стокса искомого элемента гравита-
ционного поля Земли и аналитическое продолжение вверх найденного 
элемента. Следуя работе [2], приведём результаты применения этого ме-
тода в случае чистых аномалий. Обозначим через gδ  значение чистой 
аномалии силы тяжести на физической поверхности Земли, а через g′δ – 
значение чистой аномалии на уровне точки A , в которой предполагается 
вычислять аномалию высоты ζ  или составляющие уклонения отвеса , .ξ η  

Функции gδ  и g′δ  связаны между собой рядом Тейлора [52], который 
после некоторых преобразований позволяет получить ряды для вычисле-
ния аномалий высот и компонент уклонения отвеса. 

Формулы в плоской аппроксимации имеют вид [54] 
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Выражения поправочных членов ng  являются интегралами типа 
свёртки, что позволяет при их вычислении использовать преобразование 
Фурье [54]: 
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 = − − ⋅ = π
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∑

 (2.235) 

 

или 
 

 1
1

1( , ) ( ) ( , ) ( , )
2p p A P p p p pg x y h h F Fr x y F g x y−  = − ⋅ δ π

,      (2.236) 
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Здесь r , согласно [54, 63], определяется как  
 

 ( , ) ( , ) (0,0) ( , )r x y r x y R x y= − δ ,                       (2.237) 
 

где ( , )x yδ  – двумерная дельта-функция Дирака. 
Дальнейшее упрощение вычисления ng  связано с тем, что образ 

Фурье ядра ( , )p pr x y  можно достаточно приближённо вычислить ана-

литически [54, 62]: 2( , ) (2 )R u v q≈ − π , где 2 2 1/2( )q u v= + . В результате 
получено, что [54] 
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    (2.238) 

 

и так далее. 
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На практике часто вместо 1g  вычисляют поправку за рельеф c . По-
правка за рельеф c  в точке P  выражается формулой [54, 57], которую 
также можно записать в терминах свёртки следующим образом [16, 54] 

 

[ ]{ }00
1( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , ) ( , ) ,
2

c x y G t x y l x y h x y h x y l x y L t x y= ∗ − ∗ +  (2.239) 
 

 2 2 3/2 2
00( , ) ( ) , ( , ) ( , ), (0,0)l x y x y t x y h x y L L−= + = = ,         (2.240) 

 

где G  – гравитационная постоянная; 
  – средняя плотность топографических масс; 
h  и ph  – нормальные высоты, ph h h∆ = − . 

2.8. Вейвлетный анализ 

2.8.1. От классического преобразования Фурье  
к оконному преобразованию Фурье 

Под вейвлетным анализом понимается специальный вид спектрального 
анализа, позволяющий, в отличие от классического спектрального анализа 
Фурье, получать распределение амплитуд (мощности) анализируемого 
сигнала и по частоте, и по времени (пространству). 

Широкое использование классического преобразования Фурье (ПФ)  
в параграфе 2.7. основано на замечательном свойстве этого преобразова-
ния, позволяющем заменять сложные интегральные преобразования опре-
делённого класса (свёртки) в пространственной области простым умноже-
нием соответствующих образов в частотной области. При этом приходит-
ся работать только или в пространственной области, или только в частот-
ной области, и важны только правильные зависимости амплитуд от ча-
стот, что и полностью обеспечивает стандартный образ Фурье. Но, если 
необходимо выполнить спектральный анализ полезных сигналов или де-
тальное моделирование ГПЗ, то тот факт, что спектр, получаемый с по-
мощью стандартного ПФ, указывает зависимость амплитуд (или, более 
общо, мощности сигнала) только от частот и не даёт никаких сведений  
о положении спектра в пространстве, представляет собой серьёзный недо-
статок классического ПФ и обобщённых рядов Фурье. 

Так, преобразование Фурье не отличает сигнал с суммой двух синусо-
ид (стационарный сигнал) от сигнала с двумя последовательно следую-
щими синусоидами с теми же частотами (нестационарный сигнал), так как 
спектральные коэффициенты вычисляются интегрированием по всему ин-
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тервалу задания сигнала. Полностью отсутствуют возможности анализа их 
особенностей (сингулярностей), так как в частотной области происходит 
«размазывание» особенностей сигналов (разрывов, ступенек, пиков и т. п.) 
по всему частотному диапазону спектра. Появляются «паразитные» высо-
кочастотные составляющие, явно отсутствующие в исходном сигнале при 
наличии в нём скачков и разрывов. 

Например, составим из гармоник 1( ) cos(2 10 )t tϕ = π  и 2 ( ) cos(2 20 )t tϕ = π  
с частотными компонентами 10и 20 Гц два разных сигнала:

1 1 2( ) ( ) ( )f t t t= ϕ +ϕ , а 2 ( )f t  пусть состоит из тех же частот, но появляю-
щихся на разных промежутках времени – сначала на промежутке от 0 до 
300 мс определена 1( )tϕ , а затем на промежутке от 300 до 600 мс опреде-
лена 2 ( )tϕ . Очевидно, что 1( )f t  и 2 ( )f t  существенно отличаются друг от 
друга, причем сигнал 1( )f t  является стационарным, так как его частоты не 
меняются со временем, а сигнал 2 ( )f t  нестационарный. Однако их ПФ 
(спектры) не содержат никаких признаков различия и полностью совпа-
дают. Отметим, что в теории сигналов важную роль играют нестационар-
ные сигналы с линейной частотной модуляцией (ЛЧМ), частота которых 
со временем меняется непрерывно (chirp-сигналы). 

Итак, если сигнал нестационарный (а, в общем случае, это так и есть), 
то для его анализа и моделирования деталей классическая теория Фурье 
непригодна. Чтобы как-то подправить ситуацию, возникла идея тракто-
вать нестационарные сигналы как кусочно-стационарные. Такой подход 
получил название оконного преобразования Фурье (ОПФ). Область опре-
деления сигнала делится на отдельные части (окна), в пределах которых 
сигнал можно считать стационарным. Сигнал умножается на некоторую 
оконную функцию (взвешивается) и произведение подвергается ПФ. Да-
лее оконная функция сдвигается, и процедура повторяется. В результате 
получается не стандартная амплитудно-частотная зависимость, а некото-
рая амплитудно-частотно-временная (амплитудночастотно-простран–
ственная) зависимость. Мы не только знаем, какие частотные компоненты 
присутствуют в сигнале, но и в какой момент времени (в какой области 
пространства) они встречаются. Полученная спектрограмма уже не обыч-
ная двумерная (частоты, аплитуды), а трёхмерная (частоты, время, мощ-
ность сигнала). Конечно, эта информация приближённая, но, казалось бы, 
чем уже носитель оконной функции, тем больше оснований полагать ста-
ционарность в соответствующей области, и тем подробнее результат. Од-
нако, это не так. Согласно принципу неопределённости Гейзенберга, 
улучшение временной (пространственной) локализации приводит к ухуд-
шению локализации частотной. К тому же, окно нужно выбирать единое 
для всего сигнала, тогда как разные участки обычно требуют применения 



 

165 

разных окон. Таким образом, ОПФ заметно расширяет возможности клас-
сического ПФ, но, по существу, проблема анализа нестационарных сигна-
лов остаётся нерешённой. То же можно сказать и относительно ПХ. Ну-
жен новый аппарат с новыми базисными функциями. 

Такой аппарат – необходимые определения, свойства и их следствия – 
кратко изложен ниже, но применительно только для одномерных сигна-
лов. При необходимости все сказанное может быть обобщено на много-
мерные случаи. Для простоты мы говорим о функциях, зависящих от вре-
мени t  и, соответственно, о временных рядах и частотах. Однако без 
нарушения общности независимая переменная может трактоваться как 
характеристика пространственного местоположения. 

2.8.2. От оконного преобразования Фурье  
к вейвлет-преобразованию 

Получить детальное распределение мощности нестационарного сигна-
ла одновременно и относительно расположения в пространстве, и относи-
тельно частотного состава физически невозможно из-за уже не раз упоми-
навшегося принципа неопределённости Гейзенберга. Но физика такова, 
что высокочастотные компоненты нестационарных сигналов обычно ло-
кальны, то есть занимают отдельные короткие промежутки времени (от-
дельные области небольших размеров). А длинноволновые компоненты, 
как правило, наоборот являются относительно протяжёнными. Это даёт 
возможность выполнить такое преобразование сигнала, которое позволяет 
анализировать сигнал на различных частотах и различном временном 
(пространственном) разрешении одновременно. Такое преобразование со-
стоит в представлении сигнала (для простоты речь идёт об одномерном 
сигнале) в виде обобщенного ряда или интеграла 

Фурье по системе базисных функций вида 
 

 1( )ab
t bt

aa
− ϕ = ψ 

 
,                              (2.241) 

 

где 0a >  – параметр, который позволяет изменять временной (простран-
ственный) масштаб;   

b  – параметр, который позволяет осуществлять сдвиг по времени (по 
пространству); 

1
a

 – множитель, который обеспечивает независимость нормы этих 

функций от масштабирующего числа a . 
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При заданных значениях параметров a  и b  такие функции называют-
ся вейвлетами (wavelet – короткая волна), а разложение сигналов  
по вейвлетам называется вейвлет-преобразованием (ВП). 

Вейвлеты ( )ab tψ  конструируются из некоторого исходного материн-
ского вейвлета ( )tψ . Малые зн ачения a соответствуют мелкому масштабу 

( )ab tψ , или высоким частотам 1/ aω  , большие значения параметра a  – 
крупному масштабу ( )ab tψ , то есть растяжению материнского вейвлета 

( )tψ  и сжатию его спектра. 
Перечислим основные признаки, которыми непременно должна обла-

дать исходная функция, чтобы стать вейвлетом: 
– ограниченность, то есть квадрат нормы функции должен быть ко-

нечным; 
– локализация и во времени, и по частоте; 
– осцилляция (знакопеременность) вокруг нуля на оси времени так, 

что среднее значение равно нулю; 
– самоподобие, то есть все вейвлеты конкретного семейства ( )ab tψ  

имеют то же число осцилляций, что и материнский вейвлет ( )tψ . 

Непрерывное вейвлет-преобразование 

Непрерывное вейвлет-преобразование (НВП) определяется как скаляр-
ное произведение сигнала ( )f t  и базисных функций ( )ab tψ , конструируе-
мых с помощью непрерывных масштабных преобразований ( a  в едини-
цах, обратных частоте) и переносов (b  в единицах времени) материнского 
вейвлета ( )tψ  с произвольными значениями базисных параметров a  и b   
в формуле (2.241). В результате прямое (анализ) и обратное (синтез) НВП 
(т. е. ПНВП и ОНВП) сигнала ( )f t  определяются следующими действия-
ми [64, 65]: 

 

 1( , ) ( ( ), ( )) ( )f ab
t bW a b f t t f t dt

aa

∞

−∞

− = ψ = ψ 
 

∫ ,            (2.242) 

 

2 1
2

1( ) ( , ) ( ) , ( )f ab
dadbf t W a b t C d

C a

∞ ∞
−

ψ
ψ −∞ −∞

= ψ = Ψ ω ω ω< ∞∫ ∫ ∫ ,   (2.243) 

 

где Cψ  – нормирующий коэффициент (для ортонормированных вейвлетов 
1Cψ = ); 
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 ( )Ψ ω  – образ Фурье вейвлета ( )tψ . 
Из (2.242) следует, что вейвлет-спектр ( , )fW a b  (масштабно-временной 

спектр) в отличие от фурье-спектра является функцией двух аргументов: 
первый аргумент a  (временной масштаб) аналогичен периоду осцилляций, 
т. е. обратен частоте, а второй b  аналогичен смещению сигнала по оси 
времени. 0( , )fW b a характеризует временную зависимость (при 0a a= ),  

а 0( , )fW a b  характеризует частотную зависимость (при 0b b= ). 
Если исследуемый сигнал ( )f t  представляет собой одиночный им-

пульс длительностью ,uτ  сосредоточенный в окрестности 0t t= , то его 
вейвлет-спектр будет иметь наибольшее значение в окрестности точки  
с координатами 0,ua b t= τ = . 

Результат вейвлет-преобразования – обычный массив числовых коэф-
фициентов. Такая форма представления информации очень удобна, по-
скольку числовые данные легко обрабатывать. С геометрической точки 
зрения, спектр ( , )fW a b  одномерного сигнала представляет собой поверх-
ность в трехмерном пространстве. Для изображения поверхности часто 
пользуются изоуровнями на плоскости ab , позволяющими проследить 
изменение интенсивности амплитуд ВП на разных масштабах ( )a  и в раз-
ное время ( ).b  Иногда изображают картины линий локальных экстрему-
мов поверхности, так называемый скелетон (sceleton), который выявляет 
структуру анализируемого сигнала. При широком диапазоне масштабов 
применяются логарифмические координаты (log , )a b . 

Таким образом, при НВП, так же, как и при ОПФ, перед интегрирова-
нием сигнал как бы взвешивается некоторой функцией-окном. Но теперь 
решение проблемы выбора окна как бы содержится в самой базисной 
функции, которая позволяет сужать и расширять это окно. В результате 
НВП представляет собой определённую меру подобия между базисными 
функциями (вейвлетами) и самим сигналом – чем больше подобия, тем 
заметнее реакция. Вычисленные коэффициенты отражают близость сигна-
ла к вейвлету текущего масштаба. Процедура определения коэффициентов 
начинается с использования наиболее сжатого вейвлета ( 1)a = , что выяв-
ляет наличие наиболее высоких частот сигнала. Затем вейвлет смещается 
на b , и так до конца сигнала. Следующий шаг состоит в увеличении мас-
штаба a  на некоторую величину (таким образом, расширяя вейвлет-окно 
для поиска более низких частот), и процедура смещения повторяется.  
В результате получается большое количество избыточной информации, 
поскольку получается набор вейвлет-коэффициентов для каждого воз-
можного масштаба. 
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Отсюда появляется возможность адаптивного к сигналу выбора пара-
метров окна. В соответствии с принципом неопределенности сужение ок-
на анализа во временной области вызывает расширение его в частотной. 
Поэтому, если на плоскости время-частота изобразить такое окно в виде 
прямоугольника, длина одной стороны которого равна длине некоторого 
промежутка времени, а длина другого равна длине соответствующего 
промежутка частот, то площадь такого окна при его перемещении остает-
ся постоянной. 

Неравенству из (2.243) удовлетворяют многие функции, и в литературе 
можно найти множество различных вейвлетов.  Например, вейвлетный 

базис можно получить из функции Гаусса 21( ) exp( /2).
2

y t t= −
π

 Взяв 

первую производную, получим вейвлет вида 21( ) exp( /2),
2

t t tψ = − −
π

 ко-

торый называют WAVE-вейвлет. Если взять вторую производную, то по-

лучим вейвлет 2 21( ) (1 )exp( /2),
2

t t tψ = − −
π

 который называют мексикан-

ской шляпой (МНАТ-вейвлет). Разность двух Гауссиан образует DOG-

вейвлет 2 21exp( /2) exp( / 8).
2

t t− − −  Такие «гауссовы» вейвлеты являются 

одними из самых распространённых. Их описание можно найти, напри-
мер, в работе [64]. 

Свойства вейвлет-анализа 

Прямое ВП содержит комбинированную информацию об анализируе-
мом сигнале и анализирующем вейвлете. Несмотря на это, ВП позволяет 
получить объективную информацию о сигнале, потому что некоторые 
свойства ВП не зависят от выбора анализирующего вейвлета. Независи-
мость от вейвлета делает следующие простые свойства очень важными: 

– линейность [ ]1 2 1 2( ) ( ) ( , ) ( , )W f t f t W a b W a bα +β = α +β  следует из ска-
лярного произведения (2.242); 

– смещение сигнала во временной области на 0b  ведет к сдвигу 
вейвлет-образа также на b0, то есть [ ] [ ]0 0( ) ,W f t b W a b b− = − ; 

– растяжение (сжатие) сигнала приводит также к растяжению (сжатию) 
его в области ( , )W a b , то есть ( ) [ ]0 0 0 0/ 1/ / , /W f t a a W a a b a  =  ; 
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– дифференцирование [ ]( 1) ( ) ( )m m m
t t abW d f f t d t dt

∞

−∞

  = − Ψ  ∫  откуда 

следует, что проигнорировать, например, крупномасштабные составляю-
щие и проанализировать особенности высокого порядка или мелкомас-
штабные вариации сигнала ( )f t  можно дифференцированием нужное 
число раз либо вейвлета, либо самого сигнала. Если учесть, что часто сиг-
нал задан цифровым рядом, а анализирующий вейвлет – формулой, то это 
свойство весьма полезное; 

– масштабно-временная локализация обусловлена тем, что элементы 
базиса ВП хорошо локализованы и обладают подвижным частотно-
временным окном. За счет изменения масштаба (увеличение a  приводит  
к сужению фурье-спектра функции ( ))ab tψ  вейвлеты способны выявлять 
различие в характеристиках на разных шкалах (частотах), а за счет сдвига – 
проанализировать свойства сигнала в разных точках на всем исследуемом 
интервале. Это позволяет сохранять хорошее разрешение на разных мас-
штабах. 

Что касается обратного НВП, то его точность зависит от выбора базис-
ного вейвлета и способа построения базиса, т. е. от значений базисных па-
раметров ,a b . Строго теоретически, вейвлет может считаться базисной 
функцией 2 ( )L R , ( , )R −∞ ∞  только в случае его ортонормированности. 
Для практических целей непрерывного преобразования часто бывает 
вполне достаточна устойчивость и приближённая ортогональность систе-
мы разложения функций. Под устойчивостью понимается достаточно точ-
ная реконструкция произвольных сигналов. Для ортонормированных 
вейвлетов обратное   вейвлет-преобразование записывается с помощью 
того же базиса, что и прямое (2.243). 

Разложение сигналов в ряд по вейвлетам.  
Диадное вейвлет-преобразование 

Непрерывное изменение параметров a  и b  при расчёте вейвлет-
спектра требует большие вычислительные затраты. Но участвующее при 
этом множество функций ( )ab tψ , по сути, избыточно. Желательна дискре-
тизация параметров при сохранении возможности восстановления сигнала 
из его преобразования. Дискретизация, как правило, осуществляется через 
степени 2: 

 

1 12 , 2 , ( ) (2 )
2

m m m
mk m

t ba b k t t k
aa

−− = = ⋅ ψ = ψ = ψ − 
 

, (2.244) 
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где m  и k  – целые числа.  
В этом случае плоскость ,a b  превращается в соответствующую сетку 

,m k . При этом дискретизация называется диадной, а соответствующее 
преобразование – диадным (dyadic) ВП. Параметр m  называется диадным 
параметром масштаба. 

Прямое и обратное диадное ВП непрерывных сигналов запишутся в виде: 
 

 
,

( ( ), ( )) ( ) ( ) , ( ) ( )mk mk mk mk mk
m k

c f t t f t t dt f t c t
∞

−∞
= ψ = ψ = ψ∑∫ ,    (2.245) 

 

где коэффициенты mkc   можно определить через непрерывное ВП 

( , )fW a b  как (2 , 2 )m m
mkc W k= ⋅ .  

В результате вейвлет-спектр mkc  можно представить как вертикальные 
отрезки, размещенные на плоскости ,a b  в узлах сетки ,m k . Формально 
обобщенный ряд Фурье для ( )f t  в (2.245) отличается от традиционного 
только тем, что суммирование проводится не по одному, а по двум индек-
сам. Но это несущественно, так как обе системы индексации принадлежат 
одному классу бесконечных счётных множеств. 

Диадное ВП часто называют дискретным. Однако, по мнению ряда ав-
торов, правильнее называть его диадным, представляющим особую разно-
видность непрерывного ВП и позволяющим устранить избыточность по-
следнего. 

Особый вид вейвлетов, занимающих промежуточное положение между 
непрерывным и диадным ВП, называют фреймом. Вейвлет-фреймы ис-
пользуют кратное двум масштабирование ( 2 )ma = , но непрерывный 
сдвиг. Следовательно, они сохраняют избыточность, которая присуща не-
прерывному ВП, но в гораздо меньшей мере по сравнению с ним. 

Дискретное преобразование 

Под дискретным вейвлет-преобразованием (ДВП) понимается дискрети-
зация не только параметров a  и b , но и дискретизация во времени самого 
сигнала. На основании теоремы отсчетов Котельникова непрерывный сиг-
нал ( )f t , спектр которого не содержит частот выше mv , полностью опреде-
ляется дискретной последовательностью своих мгновенных значений 
{ }, 0,1,..., 1,if i N= −  отсчитываемых через интервалы времени t∆ : 
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∆
,                            (2.246) 

 

где t∆  и dv   – интервал (шаг) и частота дискретизации. 
Таким образом, дискретизированный с шагом t∆  сигнал можно опре-

делить выражением: 
 

 { }
1

1
( ) ( ) ( )

N
d i

i
f t f f i t t i t

−

=
= ∆ δ − ∆∑ ,                       (2.247) 

 

где ( )tδ  – дельта-функция Дирака.  
Заметим, что, если нас интересует только анализ сигнала (без после-

дующего его синтеза), то дискретизация может выполняться с любой ча-
стотой, даже не удовлетворяющей критерию Найквиста. 

Если число отсчетов составляет 02nN = , то максимальное значение m  
в формулах (2.244) будет равно 0 1n − . Наибольшее значение k  для теку-

щего m  определяется: 02 1n mk −= − . В частности, для 0m =  (то есть 1a = ) 
число сдвигов k  базисного вейвлета составит 02 1 1n N− = − ; с каждым 
последующим значением (1,2,...)m  вейвлет ( )mk tψ  расширяется в два ра-
за, а число сдвигов k  уменьшается в два раза. 

Вейвлет-коэффициенты mkc  можно вычислить с помощью итерацион-
ной процедуры, известной под названием быстрого вейвлет-
преобразования БВП. С алгоритмом БВП можно ознакомиться, например, 
с помощью работ [66, 67]. При этом, если необходимо, можно сжать полу-
ченные данные, отбросив некоторую несущественную часть закодирован-
ной таким образом информации. Осуществляется это квантованием,  
в процессе которого приписываются разные весовые множители различ-
ным вейвлет-коэффициентам. Аккуратно проведенная процедура позволя-
ет не только удалить возможные шумы, но и существенно сократить по-
требность в компьютерной памяти. 

Двумерные вейвлеты 

Двумерные (и вообще многомерные) вейвлет-преобразования являют-
ся расширением одномерных преобразований. 

Пусть, например, приходится иметь дело с двумерными массивами 
( , )f x y  двух переменных x  и y . Тогда, вместо выражения для одномер-
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ной вейвлет-функции вида (2.241), можно воспользоваться двумерным 
аналогом 

 1 2

1 21 2

1 ,x b x b
a aa a

 − −
ψ 
 

,                                 (2.248) 

 

где 1a  и 2a , 1b  и 2b  – значения a  и b  по каждому измерению. 
Для двумерного диадного ВП непрерывных сигналов: 

 

 /2 /2
, ,

2 , 2 ,

2 (2 ), 2 (2 ).

m m

m m m m
m k m k

a b k ka

V k V k− − − −

= = =

ϕ = ϕ − ψ = ψ −
       (2.249) 

 

В общем случае вейвлетными функциями таких преобразований явля-
ются тензорные произведения одномерных функций по размерности пре-
образования. Разработаны различные численные методы работы с такими 
функциями (см. например, [12, 66, 67]), но практическая реализация пре-
образований с многомерными вейвлетами (мультивейвлетами) остаётся 
достаточно сложной. 

Относительная сложность любых вейвлетных преобразований является 
их основным недостатком. 

Теория вейвлет-разложения на плоскости, к сожалению, не может быть 
естественно распространена на двумерную сферу из-за особенностей на 
полюсах в стандартной сферической системе координат и вообще из-за 
другой топологии. Предпринимались разные попытки задания плоским 
вейвлетам растяжения на сфере, например, с помощью стереографической 
проекции. В результате трудами, главным образом, немецкого математика 
Фридена (Freeden) [22] и его соратников [21, 31] разработан метод сфери-
ческого вейвлет-разложения, использующий гармонические вейвлеты. 
Этот метод позволяет выделять разные частоты исследуемой функции  
(в обычном смысле разложений по сферическим гармоникам) и приводит 
к её разномасштабному представлению, см. параграф 2.3. 

2.8.3. Некоторые геодезические приложения 

Вейвлет-преобразования в настоящее время приняты на вооружение 
для огромного числа разнообразных применений, нередко заменяя обыч-
ное преобразование Фурье. В основном используются дискретные вейвле-
ты как в силу повсеместного применения цифровых методов обработки 
данных, так и в силу ряда различий дискретного и непрерывного вейвлет-
преобразований. Но непрерывные вейвлеты дают несколько более нагляд-
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ное представление результатов анализа в виде поверхностей вейвлет-
коэффициентов по непрерывным переменным. 

В пункте 2.7.3. показано, что важнейшие задачи физической геодезии  
в рамках строгой теории Молоденского можно формулировать в терминах 
свёрток и решать с помощью преобразований Фурье. В работах [68, 69] 
разработаны алгоритмы вычислений аномалии высоты и составляющих 
уклонений отвеса с точностью нулевого и первого приближения теории  
Молоденского для ближней зоны на основе вейвлет-преобразования. 
Например, вычисление аномалии высоты 0ζ   с точностью нулевого при-
ближения выполняется по формуле 

 

 
[ ] [ ]{ }1

0 1( )
2
R W W g W S−ζ = ∆ ⋅ ψ
πγ ,                        (2.250) 

 

где R  – средний радиус Земли; 
γ  – нормальное значение силы тяжести; 
[ ]...W  и [ ]1 ...W −

 – прямое и обратное полные ступенчатые двумерные 
вейвлет-преобразования (схема лифтинга); 

g∆  – массив данных аномалии силы тяжести. 

1
1( ) ( )sin( )
2

S Sψ = ψ ψ
 – модифицированная функция Стокса ( )S ψ . 

Проведены исследования по выбору наилучшего алгоритма вейвлет-
преобразования для решения конкретных задач по определению трансфор-
мант гравитационного поля. Сравнивались лифтинг-схема с фильтрами 
Хаара, стационарное преобразование с фильтрами Хаара и стационарное 
преобразование с фильтрами Добеши второго порядка. Использование схе-
мы лифтинга позволило на порядок ускорить вычисления по сравнению  
с использованием стационарного вейвлет-преобразования. Методы вычис-
лений проверены на реальных материалах гравиметрических съёмок. 

В работе [12] в терминах двухмерных ВП с использованием ортого-
нальных вейвлетов Добеши (Daubechies) выражены 8 основных инте-
гральных операторов физической геодезии в плоской аппроксимации: 
Стокса, Венинг-Мейнеса, Пуассона (продолжение вверх) [70] – все 3  
в прямом и обратном направлениях, а также поправка в силу тяжести за 
рельеф и формула преобразования уклонения отвеса в высоты геоида. 
Сингулярности ядер аппроксимированы в конечномерных подпростран-
ствах разномасштабного анализа. Разработаны методы высокой степени 
сжатия детализирующих коэффициентов и рекомендованы процедуры вы-
числений, существенно сокращающие необходимый объём вычислений  
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и освобождающие память компьютера. Последний фактор позволил сво-
бодно работать с обширными матрицами разряженной структуры. Точ-
ность конечных результатов идентична точности известных методов пре-
образований Фурье и численных интегрирований. 

В работе [71] исследованы возможности применения теории вейвлетов 
в свете линейной алгебры [65] при сжатии и фильтрации геоинформации. 
Разработаны методики построения ортонормированных базисов различ-
ными методами вейвлет-преобразования, на основе которых составлены 
алгоритмы и соответствующие программы для ЭВМ по сжатию геоин-
формации на примере рельефа местности и фотоизображений. Исследова-
на эффективность сжатия геоинформации и фильтрации шумов с помо-
щью вейвлетов. Разработана методика определения значения величины 
фильтра в зависимости от точности исходной геоинформации, проиллю-
стрированная на примере расчёта значения фильтра для сжатия информа-
ции о высотах рельефа местности. Такая же методика рекомендована  
и для фильтрации изображений. 

Примеры определения распределения плотностных источников по ре-
зультатам гравиметрии с помощью ВП можно найти в работе [72]. Разра-
ботано вейвлет-преобразование геопотенциальных полей на горизонталь-
ном круговом цилиндре и сферической поверхности [74]. Наиболее важ-
ным результатом реализации такого преобразования явилась возможность 
определения местоположений и глубин залегания аномалиеобразующих 
источников. Изучение характера распределения вейвлет-коэффициентов 
при различных значениях масштабного параметра позволило ассоцииро-
вать аномалии вейвлет-срезов с известными геологическими структурами. 

Разнообразные приложения описаны в монографии [32]. 
Отметим также эффективное использование ВП (в частности, с помо-

щью вейвлетов Морле (Morlet)) при исследовании точности и надёжности 
работы глобальных навигационных спутниковых систем и построенных  
с их помощью сетей в различных условиях [74]. 

2.9. Искусственные нейронные сети 

2.9.1. Общие сведения об ИНС 

Искусственная нейронная сеть (ИНС) – это новое направление в вы-
числительной математике и практике создания сложных технических си-
стем, способное выполнять самые разнообразные операции, в том числе 
недоступные для традиционной математики (сравнения по образцу, клас-
сификация объектов, распознавание образов и др.). Область использова-
ния ИНС в настоящее время чрезвычайно широка – от диагностики забо-
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леваний и автоматического анализа документов до управления динамиче-
скими системами и создания искусственного интеллекта. Поэтому есте-
ственно желание выяснить возможности нового мощного математическо-
го метода и при решении задач геодезического профиля. 

ИНС представляет собой систему соединённых и взаимодействующих 
между собой довольно простых процессоров (искусственных нейронов). 
Каждый нейрон подобной сети имеет дело только с сигналами, которые он 
периодически получает, и сигналами, которые он периодически посылает 
другим нейронам Каждый вход в i-ый нейрон умножается на некоторый 
весовой коэффициент iw , определяющий активность соответствующего 
сигнала. Произведения суммируются, и к ним добавляется некоторая кон-
станта ( ,0)w i  (смещение). Далее эта сумма модифицируется с помощью 
какой-нибудь несложной нелинейной функции. Нелинейная функция, ко-
торая используется для преобразования уровня активации нейрона в вы-
ходной сигнал, называется передаточной функцией (или элементом акти-
вации). Передаточная функция обеспечивает нелинейность сети (известно, 
что многослойные нейронные сети обладают большей представляющей 
мощностью, чем однослойные, только в случае присутствия нелинейно-
сти). В качестве передаточной функции можно выбирать различные нели-
нейные дифференцируемые функции, но обычно используется сигмоида 

1( ) (1 exp( )) , 0s x kx k−= + − > , так как её возможные значения всегда нахо-
дятся между 0 и 1. При этом слабые сигналы усиливаются, а с увеличени-
ем сигнала это усиление падает. Кроме того, сигмоида имеет простую 
производную (1 )s s s′ = − . 

Такие по отдельности простые процессоры, будучи соединёнными  
в достаточно большую сеть с управляемым взаимодействием, вместе спо-
собны решать довольно сложные задачи. Совокупность нейронов с еди-
ными входными сигналами называют слоем. 

Обычно выделяют (по крайней мере) три слоя сети:  
– входной (исходные данные задачи);  
– промежуточный (его называют скрытым, скрытых слоёв может быть 

много); 
– выходной (результаты решения задачи).  
Сети, содержащие только один промежуточный слой, называют пер-

септронами. Если промежуточных слоёв несколько, то используется тер-
мин многослойный персептрон. В конечном счёте, при наличии k  нейро-
нов входного слоя, одного промежуточного слоя с m  нейронами и одном 
нейроне на выходе 
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Доказана обобщённая аппроксимационная теорема [75]: с помощью 
определённого набора указанных операций можно получить структуру, 
описывающую любую непрерывную функцию с определённой наперёд 
заданной точностью. Другими словами, сеть при соответствующем выбо-
ре её структуры можно сделать универсальным аппроксиматором, то есть 
какую бы функцию нам не предстояло вычислить, мы знаем, что суще-
ствует нейросеть, способная сделать это. 

Перед началом работы необходимо определиться с архитектурой сети 
– количество слоёв, количество нейронов в каждом слое, наличие и вид 
передаточных функций. Всем весам и смещениям нужно присвоить какие-
нибудь небольшие начальные значения. Лучше это делать случайным об-
разом. Полезно иметь ввиду, что многослойные нейронные сети обладают 
большей представляющей мощностью, чем однослойные, только в случае 
присутствия нелинейности. Цель дальнейших действий состоит  
в настройке сети, то есть в таком подборе ее весов и смещений, при кото-
ром приложение некоторого множества входов приводило бы к требуемо-
му множеству выходов. Для краткости эти множества входов и выходов 
называют векторами. Такая процедура составляет процесс обучения сети. 
Для обучения необходимо для каждого входного вектора иметь парный 
ему целевой вектор, задающий требуемый выход. Вместе они называются 
обучающей парой , .X Y  Желательно иметь множество таких обучающих 
пар (обучающее множество). Кроме того, необходимо определить количе-
ственный критерий близости всякого выхода сети к нужному вектору. Бу-
дем называть это функцией цели ( , , )F X Y W , где W обозначает множество 
всех весовых коэффициентов и смещений сети. 

Для каждой обучающей пары надо подать исходные данные на вход 
сети, послойно вычислить выход и получить разность между выходом се-
ти и требуемым выходом (целевым вектором обучающей пары). Эта раз-
ность определяет значение функции цели и используется далее для обрат-
ного хода, имеющего своей задачей коррекцию весов и смещений сети 
под условием минимизации функции цели. Для этого надо обеспечить 

/ 0F W∂ ∂ = , что выполняется численно, например, методом последова-
тельного спуска по градиенту или методом Левенберга-Марквардта  
[76, c. 243]. 

После достаточного числа повторений указанных операций для каждого 
вектора обучающего множества разность между действительными выхода-
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ми и целевыми выходами достигает приемлемой величины, и говорят, что 
сеть обучилась. Подробности можно найти в учебных пособиях [76–78]. 

Таким образом, нейронные сети не программируются в привычном 
смысле этого слова, а обучаются. Обучение многослойной ИНС, согласно 
указанному алгоритму обратного распространения, с математической точ-
ки зрения представляет собой многопараметрическую задачу нелинейной 
оптимизации функции цели, количественно описывающей уровень при-
годности функционирования ИНС. Обученную сеть можно трактовать как 
практический механизм реализации нелинейной зависимости «вход-выход» 
любой сложности, в том числе, в виде «чёрного ящика». Возможность обу-
чения – одно из главных преимуществ нейронных сетей перед традицион-
ными алгоритмами. В процессе обучения нейронная сеть способна выяв-
лять сложные зависимости между входными данными и выходными, а так-
же выполнять обобщение. Это значит, что в случае успешного обучения 
сеть сможет выдавать верный результат на основании данных, которые от-
сутствовали в обучающей выборке, а также неполных и/или «зашумлен-
ных», частично искажённых данных. По окончании обучения сеть жела-
тельно протестировать на каких-либо ранее не использованных данных  
и, таким образом, убедиться в надёжности последующего использования 
по назначению (для распознавания изображений, аппроксимации сложной 
зависимости, оптимизации, идентификации объектов и т. д.). 

Существует обширная классификация ИНС по различным принципам.  
Из сравнительно простых сетей мы отметим только радиальные базисные 
нейронные сети (РБНС). Эти сети используют те же свойства радиальных 
базисных функций (РБФ), что и в теории сферических вейвлетов, см. па-
раграф 2.7. Обычно РБНС состоят из большего количества нейронов, чем 
стандартные сети с прямой передачей сигналов и обучением методом об-
ратного распространения ошибки, но на их создание и обучение требуется 
значительно меньше времени. 

Из сложных ИНС особый интерес представляют самонастраивающиеся 
стохастические ИНС, выполняющие процесс обучения «самостоятельно» 
на эвристических и метаэвристических принципах без явного привлечения 
обучающего множества. В настоящее время опубликовано множество по-
добных алгоритмов. Но, по-видимому, наибольшее признание получил, 
так называемый, генетический алгоритм (ГА), [79], воплощающий пред-
ставления о дарвиновской эволюции на основе генерации, тестирования и 
отбора наиболее жизнеспособных особей (ген – единица наследственной 
информации). 
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2.9.2. Примеры успешного решения  
задач геодезии с помощью ИНС 

Преобразования координат. Моделирование систем геодезических ко-
ординат (geodetic reference system, GRS) и их реализация (geodetic 
reference frame, GRF) нередко приводит к тому, что картографический ма-
териал, составленный в разные временные промежутки, оказывается осно-
ванным на различных системах отсчёта, что вызывает необходимость их 
соотнесения друг с другом. Процедура преобразования систем координат 
хорошо известна и достаточно просто выполняется по стандартным пра-
вилам. Однако реальная связь двух систем координат по разным причинам 
далеко не всегда соответствует той математической модели, которая поз-
воляет нам достаточно надёжно определять необходимые параметры пре-
образования и их количество. Поэтому, естественно, воспользоваться 
средствами ИНС, позволяющими, как отмечалось выше, описать любую 
непрерывную зависимость с любой наперёд заданной точностью. 

Опубликовано большое количество работ, в которых задачи о преобра-
зовании систем координат (как пространственных [38, 80], так и плоских 
[81, 82]) решаются с помощью ИНС, и результаты сравниваются с реше-
ниями тех же задач классическими методами. Сделан единодушный вывод 
о несомненном преимуществе ИНС. При этом рекомендуется пользовать-
ся именно РБНС. 

Преобразования высот. Показательный эксперимент с преобразовани-
ем геодезических высот в ортометрические выполнен на территории Тур-
ции [83]. Исходными данными послужили разбросанные по территории 
страны 190 станций, на которых измерены и ортометрические высоты H  
(традиционным нивелированием), и геодезические высоты h  (с помощью 
ГНСС). Полученные точечные значения высот геоида N h H∪=  аппрок-
симированы непрерывной поверхностью, пользуясь для этого различными 
математическими средствами (полиномиальная интерполяция, сплайны, 
среднеквадратическая коллокация, искусственные нейросети) и различ-
ным количеством k  исходных значений высот геоида ( 20, 40, 80,N k =

100, 120) . Остальные 190 k∪  значений высот геоида используются для 
контроля вычислений. Сравнение результатов аппроксимации с соответ-
ствующими контрольными значениями убедительно показало, что 
наилучшая аппроксимация достигается с помощью ИНС (среднеквадрати-
ческое отклонение от 6 см для 20k =  до 4 см для 120k = ). 

По сути, аналогичные работы с теми же выводами описаны в статьях 
[84–86]. 
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Моделирование гравитационного поля. В работе [87] выполнена экс-
траполяция измеренных значений модуля силы тяжести с помощью ИНС 
в виде многослойного персептрона с алгоритмом обратного распростра-
нения ошибки. Оптимальное количество промежуточных слоёв подобрано 
эмпирически и оказалось равным 19. В 56 точках 8 12×   территории США 
значения модуля силы тяжести g  измерены непосредственно и вычисле-
ны по моделям EGM-2008 и EIGEN-6C4 до 2190-ой степени. Из парных 
значений (измеренные и вычисленные по одной из моделей) в 32 точках 
составлены обучающие векторы и выполнена тренировка ИНС. Получен-
ная в результате модель значений силы тяжести протестирована  
в оставшихся 24 точках. Сравнение полученных модельных значений  
и вычисленных по EGM-2008 (или с помощью EIGEN-6C4) с измеренны-
ми значениями показало, что точность g, полученных с помощью ИНС, 
оказывается более высокой по сравнению с результатами вычислений по 
каждой из упомянутых двух моделей ГПЗ. Заметим, что при использова-
нии ИНС нет необходимости делать какие-либо предположения относи-
тельно частотного состава данных, а при появлении дополнительной ин-
формации полученную модель легко модифицировать. 

С целью исследования геодезических возможностей искусственного 
интеллекта, в работе [88] проанализированы 6 различных вариантов ма-
шинного обучения для моделирования нормального значения силы тяже-
сти в 424 разных точках земной поверхности. Один из вариантов пред-
ставлял собой ИНС на основе радиальных базисных функций с 3 входами 
(геодезические координаты точки) и одним выходом (значение нормаль-
ной силы тяжести). Для обучения (297 точек) и тестирования (127 точек) 
результатов выходные значения предвычислены по известной формуле 
Сомильяна-Пицетти. Оптимальное количество нейронов в промежуточ-
ном слое оказалось равным 50. Именно такая РБНС показала наилучшую 
точность и устойчивость прогноза. Сделан вывод о высокой перспектив-
ности методов искусственного интеллекта при моделировании ГПЗ. 

Оценка вектора скорости смещения пунктов. В [89] показана целесо-
образность использования ИНС для оценки скоростей изменения про-
странственных положений геодезических пунктов в связи с движением 
литосферных плит. По результатам испытаний в пяти геодезических сетях 
среди выбранных ИНС предпочтение отдаётся многослойному персептро-
ну обратного распространения, точность которого в трёх сетях превысила 
точность, полученную методом кригинга. Особо отмечается способность 
ИНС без особых затрат «доучиваться» в случае выявления новых данных, 
чего нельзя сказать о кригинг-методе, требующем в таком случае повтор-
ного переопределения всех весов. 
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Аппроксимация орбиты спутников GPS. В [90] демонстрируется эф-
фективность использования РБНС при вычислении координат спутников 
GPS по бортовым и эфемеридным данным по сравнению с традиционны-
ми методами полиномиальной и тригонометрической интерполяции. 

Анализ деформаций. Набирает популярность использования ИНС для 
анализа и прогнозирования деформаций сооружений. 

В [91] описано успешное использование РБНС для моделирования век-
торов смещений и деформации конструкций, а именно резервуара для 
хранения сжиженного природного газа. Сделаны выводы об эффективно-
сти РБНС, позволившей подтвердить гипотезу о характере возникновения 
и последствий выявленных деформаций. 

В [92] исследовались возможности прогнозирования вертикального 
перемещения конструкций с целью предотвращения потенциальных по-
вреждений. Использован многослойный персептрон с алгоритмом обрат-
ного распространения. Сделан вывод о возможности использования обу-
ченной ИНС для прогнозирования вертикальных смещений с точностью 
порядка 0,5±  мм. 

Примеры использования ГА. В статье [93] описано использование ГА 
для проектирования геодезических сетей – оптимизация конфигурации 
сети, распределение весов планируемых измерений и др. 

Пример оптимального подбора спутников с помощью ГА в задачах 
ГНСС-позиционирования показан в работе [28]. 

В работе [94] ГА реализован при решении задачи об определении па-
раметров отражённого сигнала альтиметрии. При этом, в отличие от клас-
сического метода Левенберга-Марквардта, подбирать начальные значения 
параметров не требуется, достаточно указывать лишь функцию цели  
и границы возможных изменений искомых параметров. 

В работах [95, 96] с помощью ГА решаются задачи о преобразовании 
геодезических высот в ортометрические. 

2.10. Мультипольное представление потенциала 

В 1974 г. Г. А. Мещеряков [97] обратил внимание на неиспользован-
ные возможности мультипольного представления потенциала притяжения 

,V которое было предложено в 1881 г. Максвеллом и эквивалентно пред-
ставлению V в виде разложения по шаровым функциям 

 

 1
0 0

n
n n

n n

YV V
r

∞ ∞

+
= =

= =∑ ∑ ,                                       (2.251) 

 

где nY  – обычный «игрек» Лапласа (сферическую функцию n−й степени).  
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Под мультиполем нулевого порядка понимается точечный заряд q   
в начале системы координат, потенциал которого в некоторой точке про-
странства Q  равен 0 /V q r= , где q  – момент этого мультиполя, 0 ,M q r=  – 
расстояние точки Q  от заряда q . Мультиполь первого порядка – это ди-
поль. Последовательно конструируются мультиполь второго порядка 
(квадриполь), октаполи, тетраполи и т. д. В общем случае мультиполь n-го 
порядка – это точечный объект, который получается в результате пре-
дельного перехода, которому подвергаются два мультиполя (n−1)-го по-
рядка. По Максвеллу гармоника nV  может быть представлена мультипо-
лем n-го порядка 
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где nM  – момент мультиполя; 

1 2, ,..., nh h h  – направления осей мультиполя, по которым ведется диф-
ференцирование 1/r ; 

r  – расстояние от центра сферы единичного радиуса до произвольной 
точки пространства. Центр сферы принят за начало системы координат. 
При этом сферические функции удобно трактовать как 
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В работе [97] дана физическая трактовка мультиполей нулевого, 1-го  
и 2-го порядков. Последующие исследования возможностей использова-
ния мультиполей, в том числе посвящённые выбору целесообразной мето-
дики вычисления их параметров и анализу получаемых результатов, опуб-
ликованы в ряде работ Г. А. Мещерякова и А. Н. Марченко, например,  
см. [98]. Разработана методика определения полюсов (направлений осей) 
и моментов мультиполей [99], основанная на теореме Сильвестра. Эта ме-
тодика применена для расчета параметров мультиполей 3-го и 4-го поряд-
ков и более высоких порядков по данным о модели ГПЗ. 

Получено алгебраическое уравнение 2n-ой степени для определения 
направлений осей мультиполя n-го порядка и разработана методика вы-
числения моментов мультиполей при известных направлениях их осей. 
Представление сферических функций при помощи мультиполей позволяет 
точно определить положение экстремальных точек для каждой степени 
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гармоники гравитационного потенциала, в которых его градиент коллине-
арен направлению на центр масс планеты. 

Параметры мультиполей используются для построения алгоритма пре-
образования гармонических коэффициентов геопотенциала при вращении 
координатной системы. Алгоритм включает в себя вычисление параметров 
мультиполей по исходным значениям гармонических коэффициентов, пе-
ресчёт направлений осей мультиполей в новую систему координат и опре-
деление гармонических коэффициентов геопотенциала в новой системе. 

Заметим, что введенные Максвеллом оси и моменты имеют один и тот 
же смысл как для сферических (шаровых) функций, так и для мультипо-
лей соответствующих порядков. Общая сферическая функция ( , )nY θ  за-
висит от (2 1)n +  параметров. В лапласовом представлении – это коэффи-
циенты  ,nk nkc s  (см. (2.29); в  максвелловом –  это  момент функции и 2n  
величин, определяющих направления ее n  осей. Смысл этих представле-
ний различен. В первом случае разложение идет по системе базисных 
функций. Во втором – безотносительно какого-либо базиса или системы 
координат. 

Отметим, что существуют формулы перехода от максвеллова пред-
ставления сферических функций к лапласову и обратно. 

В работах А. Н. Марченко ([100, 101] и др.) нашла развитие теория ра-
диальных мультиполей, представляющих собой производные ядра точеч-
ной массы. Радиальные мультиполи, по сути, представляют собой частот-
но неограниченные СРБФ, и следовательно, могут успешно применяться 
для локального моделирования ГПЗ. Например, в работе [102] различные 
СРБФ, в том числе, радиальные мультиполи, использованы для моделиро-
вания гравитационного поля на территории Нидерландов. Проведённый 
сравнительный анализ показал, что мультиполи справляются с этой зада-
чей не хуже, чем, например, СРБФ в виде ядра Пуассона. 

2.11. Заключение по главе 2 

Выполненный краткий обзор и анализ современных подходов к пред-
ставлению гравитационного поля Земли (ГПЗ) содержит 10 параграфов, 
но не претендует, конечно, на полноту охвата. Более того, внутри почти 
каждого параграфа имеются различные направления современных иссле-
дований и их приложений, вполне достойные собственного анализа, а не 
ссылок на литературу, как это сделано в отчёте. Тем не менее, все эти 
подходы имеют общую природу в том смысле, что все они являются ме-
тодами аппроксимации геопотенциала и его трансформант по разного ро-
да функционалам на потенциале. При описании и сравнении таких мето-



 

183 

дов наиболее удобно пользоваться основными понятиями функционально-
го анализа. Необходимые для этого сведения собраны в параграфе 2.1. 

По-видимому, в настоящее время основным инструментом аппрокси-
мации геопотенциала являются ряды по шаровым функциям. Однако, 
представляется очень сомнительным продолжающееся стремление при 
моделировании ГПЗ достигать высокой разрешающей способности с по-
мощью обязательно единой модели. В параграфе 2.2. даётся обоснование 
того, что для отображения локальных особенностей поля необходимо 
привлекать новые базисные функции, отличающиеся от шаровых функций 
наличием пространственной локализации. При этом, конечно, не предпо-
лагается полный отказ от шаровых функций, которые достаточно хорошо 
проявляют себя при описании низко- и среднечастотной частей ГПЗ. Но 
для моделирования высокочастотного диапазона полезных сигналов  
в настоящее время всё чаще используются пространственно-
локализованные базисные функции, которые обычно вслед за геостати-
стикой называются сферическими радиальными базисными функциями 
(СРБФ) и вейвлетами (wavelet-короткая волна). Делается вывод о том, что 
улучшение ситуации возможно только на основе разномасштабных мето-
дов моделирования, предполагающих разумное сочетание шаровых функ-
ций и вейвлет-анализа. 

Такое разномасштабное моделирование сигналов с помощью СРБФ  
и соответствующих вейвлетов излагается в параграфе 2.3. Приведены 
определения и свойства основных понятий, указаны основные численные 
алгоритмы. Сферические вейвлеты доставляют удобный инструмент ло-
кальной аппроксимации, позволяющий как бы увеличивать мелкие детали. 
Вейвлеты отличны от 0 только в некоторой очень небольшой обследуемой 
окрестности на сфере, и поведение сигнала вне этой окрестности вообще во 
внимание не принимается. Следовательно, локально можно обследовать все 
более и более мелкие детали с повышенной точностью без ухудшения ап-
проксимации сигнала во всех остальных частях. Размер локальной области 
зависит от масштаба j  вейвлета и уменьшается с увеличением j . 

Другой эффективный метод аппроксимации ГПЗ – среднеквадратиче-
ская коллокация. Параграф 2.4. содержит достаточно подробное изложе-
ние теоретических основ этого метода и его основных алгоритмов. Отме-
чена возможность отказаться от традиционной гипотезы об изотропности 
ГПЗ и указаны ссылки на работы, описывающие коллокацию в условиях 
нестационарных полей. В конце параграфа проделан подробный сравни-
тельный анализ методов коллокации и СРБФ, которые по своим целям  
и задачам имеют много общего. 

В частности, одной из общих черт разномасштабного анализа и колло-
кации является тот факт, что те системы линейных алгебраических урав-
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нений, к решению которых сводятся основные алгоритмы этих методов, 
часто по разным причинам оказываются плохо обусловленными. Это вы-
зывает необходимость регуляризации. Необходимые для этого сведения 
изложены в параграфе 2.5. В основу положены основные методы регуля-
ризации по А. Н. Тихонову [30]. 

По существу, те же идеи регуляризации лежат в основе методов опти-
мизации основных операторов физической геодезии, изложенных в пара-
графе 2.6. Смысл оптимизации состоит в том, что при использовании опе-
раторов удаётся отфильтровывать неизбежные помехи исходной функции 
непосредственно в процессе интегрирования. В случае отсутствия помех 
выведенные обобщения совпадают с известными классическими вариан-
тами. Особый интерес, в частности, представляет распространённая задача 
оптимального суммирования возмущённых длинных рядов по шаровым 
функциям при моделировании различных трансформант ГПЗ. 

Широкий круг задач физической геодезии, основанный на быстрых 
преобразованиях Фурье и Хартли, описан в параграфе 2.7. Кратко указаны 
основные свойства этих преобразований и их приложения к численным 
методам теории Молоденского. Эффективное использование классическо-
го преобразования Фурье основано на замечательном свойстве этого пре-
образования, позволяющем заменять сложные интегральные преобразова-
ния определённого класса (свёртки) в пространственной области простым 
умножением соответствующих образов в частотной области. При этом 
приходится работать только или в пространственной области, или только 
в частотной области, и важны только правильные зависимости амплитуд 
от частот, что полностью обеспечивает стандартный образ Фурье. Но, ес-
ли необходимо выполнить спектральный анализ полезных сигналов или 
детальное моделирование ГПЗ, то тот факт, что спектр, получаемый с по-
мощью стандартного преобразования Фурье, указывает зависимость ам-
плитуд (или, более общо, мощности сигнала) только от частот и не даёт 
никаких сведений о положении спектра в пространстве, представляет со-
бой серьёзный недостаток классического преобразования Фурье и обоб-
щённых рядов Фурье. Оконное преобразование улучшает ситуацию, но не 
решает проблему. Нужен новый аппарат с новыми базисными функциями. 

Такой аппарат называется вейвлетным анализом и кратко изложен  
в параграфе 2.8. Получить детальное распределение мощности нестацио-
нарного сигнала одновременно и относительно расположения в простран-
стве, и относительно частотного состава физически невозможно из-за из-
вестного принципа неопределённости Гейзенберга. Но физика их такова, 
что высокочастотные компоненты нестационарных сигналов обычно ло-
кальны, то есть занимают отдельные короткие промежутки времени (от-
дельные области небольших размеров). А длинноволновые компоненты, 
как правило, наоборот являются относительно протяжёнными. Это даёт 
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возможность выполнить такое преобразование сигнала, которое позволяет 
анализировать сигнал на различных частотах и различном временном 
(пространственном) разрешении одновременно. Перечислены основные 
признаки, которыми непременно должна обладать функция, чтобы стать 
вейвлетом, и указана техника непрерывного и дискретного вейвлет-
преобразований. Двумерное вейвлет-преобразование невозможно непо-
средственно обобщить на сферу из-за другой топологии. Вследствие ис-
следований по преодолению этих трудностей появилась теория сфериче-
ских вейвлетов и СРБФ, описанная в параграфе 2.3. 

Параграф 2.9. посвящён новому направлению вычислительной матема-
тики – искусственным нейронным сетям (ИНС). Область использования 
ИНС в настоящее время чрезвычайно широка. Доказано, что при соответ-
ствующем выборе структуры ИНС, её можно сделать универсальным ап-
проксиматором, то есть какую бы зависимость нам не предстояло вычис-
лить, мы знаем, что существует нейросеть, способная сделать это с любой 
наперёд заданной точностью. Поэтому естественно желание выяснить 
возможности нового мощного математического метода и при решении за-
дач геодезического профиля. В параграфе 2.9. приведены общие сведения 
об ИНС и перечислены наиболее показательные примеры эффективного 
использования ИНС в геодезии. 

В последнем параграфе 2.10. описано мультипольное представление 
геопотенциала по Максвеллу. Отмечено существование формулы перехо-
да от максвеллова представления сферических функций к лапласову и об-
ратно. Радиальные мультиполи (то есть производные ядра точечной мас-
сы), по сути, представляют собой частотно неограниченные СРБФ, и сле-
довательно, могут успешно применяться для локального моделирования 
ГПЗ. Сравнительный анализ показал, что мультиполи справляются с этой 
задачей не хуже, чем, например, СРБФ в виде ядра Пуассона. 

Проделанный анализ отечественных и зарубежных современных пуб-
ликаций геодезической направленности позволяет сделать вывод, что к 
некоторым подходам к изучению ГПЗ внимание в определённом смысле 
ослабевает, а к некоторым, наоборот, усиливается. Особенно большой ин-
терес последнее время вызывают работы, исследующие геодезические 
возможности теории вейвлетов и теории искусственных нейросетей (см. 
параграфы 2.3., 2.8., 2.9.). Складывается впечатление, что эти направления 
являются в настоящее время наиболее перспективными. Не ослабевает ин-
терес к совершенствованию и приложениям коллокации в разных её кон-
цепциях (см. параграф 2.4.). Сравнительный анализ методов коллокации, 
СРБФ и сферических вейвлетов описан в конце параграфа 2.4. Использо-
вание СРБФ в теории и практике нейросетей отмечено в параграфе 2.9. 

Разумеется, предположительно высказанные приоритеты никак не 
умаляют другие методы, упомянутые в отчёте или не упомянутые, речь 
идёт лишь о тенденциях в публикациях, и всё может быстро измениться. 



 

186 

Другая тенденция публикаций состоит в том, что все основные работы и 
разнообразные учебные пособия по современным подходам к представле-
нию ГПЗ изданы за рубежом, что затрудняет работу наших специалистов. 
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3. ЧИСТЫЕ И СМЕШАННЫЕ АНОМАЛИИ СИЛЫ ТЯЖЕСТИ, 
ПОЛУЧЕННЫЕ ПО РЕЗУЛЬТАТАМ НАЗЕМНЫХ ИЗМЕРЕНИЙ  

И ПО РЕЗУЛЬТАТАМ РАБОТЫ КОСМИЧЕСКИХ  
ГРАВИМЕТРИЧЕСКИХ МИССИЙ CHAMP,  

GRACE, GRACE-FO, GOCE 

3.1. Анализ данных чистых и смешанных аномалий силы  
тяжести, полученных по результатам наземных измерений 

3.1.1. Актуальность исследования 

Высокоточное и детальное определение параметров гравитационного 
поля Земли относится к числу важнейших и наиболее сложных научных 
задач геодезии. Знание гравитационного поля является необходимым 
условием для решения широкого круга прикладных и фундаментальных 
задач, включая высокоточное позиционирование, навигацию, геофизиче-
ские и геодинамические исследования, гидрологические расчёты, а также 
мониторинг состояния окружающей среды. 

Пространственные координаты на всей поверхности Земли могут 
определяться с миллиметровой точностью относительно её центра масс на 
основе сигналов глобальных спутниковых навигационных систем (ГНСС). 
Однако остаётся нерешённой проблема однозначного определения физи-
ческих высот. Лишь на отдельных территориях удаётся вычислять физи-
ческую высоту с погрешностью порядка сантиметра. Для большей части 
территорий земного шара ошибки превышают дециметровый уровень,  
а в горах и предгорьях они могут достигать нескольких метров. Вслед-
ствие этого координатно-временное и навигационное обеспечение 
(КВНО), основанное только на ГНСС, не является полным. Связано это 
главным образом с недостаточной точностью моделей гравитационного 
поля, поскольку физическая высота определяется потенциалом поля силы 
тяжести Земли. Гравитационный потенциал сложен для описания матема-
тическими моделями, поскольку находится в прямой зависимости от 
внутреннего строения Земли. Оно, в свою очередь, труднодоступно для 
непосредственного изучения. На практике геопотенциал можно лишь вы-
числить на основе косвенных измерений, главным образом, значений 
ускорения силы тяжести (гравиметрический метод). При этом связь изме-
ряемых характеристик поля с потенциалом нелинейная и требует сложно-
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го математического аппарата с одной стороны и глобальной гравиметри-
ческой изученности с другой. 

Геопотенциал в точке также можно получить в комбинации геометри-
ческого нивелирования и гравиметрических определений. Однако вычис-
ление потенциала таким способом имеет технологическое ограничение. 
При развитии протяжённых нивелирных сетей неизбежно накапливаются 
систематические погрешности, что, в свою очередь, приводит к увеличе-
нию неопределённости физической высоты по мере удаления от исходно-
го пункта сети. Накапливаемая неопределенность также приводит к си-
стематическим ошибкам дециметрового порядка. 

Одним из перспективных способов решения проблемы построения си-
стемы физических высот является развитие сетей квантовых футштоков, 
позволяющих напрямую оценивать приращение гравитационного потен-
циала с использованием технологии хронометрического нивелирования. 
Тем не менее, технические средства хронометрического нивелирования  
в обозримом будущем будут оставаться в стадии лабораторных образцов, 
а в перспективе, даже при их практическом внедрении, будут являться 
наиболее дорогостоящим видом геодезического оборудования. Поэтому 
на перспективу следующих десятилетий решение задачи развития обще-
мировой системы высот следует искать в совершенствовании классиче-
ских технологий. И самая важная из них – технология моделирования гра-
витационного поля. 

В настоящее время отсутствуют универсальные методики моделирова-
ния гравитационного поля Земли (ГПЗ). Это обусловлено разнообразием 
типов используемых измерительных данных, различиями в процедурах 
предварительной подготовки информации, а также применяемыми мате-
матическими моделями. Процесс подготовки данных является технологи-
чески сложным, поскольку требует учёта множества факторов. Для повы-
шения качества моделирования ГПЗ применяется ряд вспомогательных 
преобразований, предполагающих привлечение дополнительных данных. 
Например, процедура топографического редуцирования, используемая для 
повышения точности интерполяции аномалий силы тяжести, требует при-
менения детальных и точных цифровых моделей рельефа местности. 

В связи с этим Международной ассоциацией геодезистов (IAG) созда-
на рабочая группа в рамках Комиссии 2 «Гравитационное поле» 
(Commission 2. Gravity Field), одной из задач которой является разработка 
и стандартизация эффективных методик предварительной обработки дан-
ных и моделирования гравитационного поля Земли [1]. Деятельность по 
данному направлению координируется специализированными подкомис-
сиями IAG, в частности SC 2.2 «Geoid, Physical Height Systems and Vertical 
Datum Unification» и SC 2.4 «Gravity and Geoid» а также её региональными 
подразделениями (SC 2.4a–2.4e). Сравнительные исследования показыва-



 

196 

ют, что различные комбинации процедур предварительной обработки 
приводят к существенно различающимся результатам моделирования ГПЗ 
на одних и тех же территориях. При этом уровень расхождений зависит от 
степени гравиметрической изученности региона, характера рельефа и типа 
используемых измерений [2]. 

Следовательно, выбор технологий обработки гравиметрических дан-
ных является важным элементом технологии построения единой системы 
физических высот. Для корректного моделирования гравитационного поля 
Земли, строго говоря, требуется полная гравиметрическая изученность 
всей земной поверхности. При этом объём и качество используемой изме-
рительной информации напрямую определяют итоговое качество гравита-
ционной составляющей координатно-временного и навигационного обес-
печения (КВНО). 

Международная ассоциация геодезистов (IAG) рекомендует для по-
строения детальных моделей гравитационного поля совместно использо-
вать любую доступную измерительную информацию. Например, в каче-
стве рекомендуемых отмечены результаты наземных, воздушных и мор-
ских гравиметрические съемок, цифровые модели рельефа местности  
и современные глобальные модели геопотенциала. Комбинирование раз-
нородных измерений позволяет уменьшать погрешности моделирования 
характеристик глобального и регионального гравитационного поля [1, 3]. 
Особое внимание IAG предлагает уделять исследованию способов разра-
ботки региональных и локальных моделей на основе наземных гравимет-
рических наблюдений. 

В Российской Федерации определение характеристик гравитационного 
поля связано с созданием на основе наземной гравиметрической инфор-
мации высокоточных региональных цифровых моделей аномалий высоты, 
аномалий силы тяжести и уклонений отвесной линии, сопоставимых по 
точности с нивелирными и спутниковыми данными. 

Точность моделей характеристик гравитационного поля находится  
в прямой зависити от гравиметрической изученности территории и типа 
используемых гепространственных данных [4]. 

В Российской Федерации в результате многолетних геодезических  
и геофизических экспедиционных исследований накоплен значительный 
архив гравиметрических данных. К ним относятся материалы поисковых 
геофизических работ, карты аномалий силы тяжести в свободном воздухе, 
результаты астрономо-гравиметрических определений уклонений отвес-
ных линий, а также материалы спутникового нивелирования. Каждый тип 
измерений требует применения специализированной методики предвари-
тельной обработки, что является необходимым условием для комплексно-
го использования всего объёма доступной информации о гравитационном 
поле Земли при его моделировании. 



 

197 

Одним из важнейших факторов, влияющих на технологию моделиро-
вания гравитационного поля по наземным гравиметрическим данным, яв-
ляется использованная система высот при определении аномалии силы 
тяжести в свободном воздухе. Если при вычислении аномалии силы тяже-
сти применялась нормальная высота, то такая аномалия классифицируется 
как смешанная (3.1) 

 

 0g g H
H

γ∂γ
∆ = − γ +

∂
,                                      (3.1) 

 

где g  – измеренное значение силы тяжести; 

H
∂γ
∂

 – вертикальная составляющая градиента нормального поля силы 

тяжести; 
H γ – нормальная высота точки измерения силы тяжести. 
В зарубежных источниках смешанную аномалию называют как 

«gravity anomaly». Однако в переводе термина есть принципиальный мо-
мент, заключающийся в том, что под «gravity anomaly» понимается ано-
малия, вычисленная по высоте, отчитываемой над уровнем моря. Таким 
образом, такие аномалии силы тяжести, следует различать, но часто они 
упоминаются в одном контексте. 

Если для определения аномалий силы тяжести использовать высоты 
над уровенным эллипсоидом, то аномалия называется чистой (3.2) 

 

 0g g H
H
∂γ

δ = − γ +
∂

,                                     (3.2) 
 

где H  – геодезическая высота гравиметрического пункта. 
В зарубежной литературе чистая аномалия силы тяжести обозначается 

как «gravity disturbance». Чистые аномалии силы тяжести в свободном 
воздухе отличаются от смешанных на величину, пропорциональную ано-
малии высоты, с коэффициентом, равным вертикальному градиенту нор-
мального поля. Поскольку значения аномалий высот могут достигать не-
скольких десятков метров, разница в значениях аномалий силы тяжести 
между чистыми и смешанными типами может составлять единицы и даже 
десятки миллигал, что является значимой величиной с точки зрения задач 
высокоточного моделирования. Следовательно, одновременное использо-
вание в моделировании гравитационного поля смешанных и чистых ано-
малий без предварительного приведения их к единой системе является не-
корректным действием. 

При моделировании гравитационного поля предпочтительнее исполь-
зовать чистые аномалии силы тяжести. Это обусловлено тем, что при их 
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вычислении точки измерений строго относятся к физической поверхности 
Земли с использованием геодезических высот, отсчитываемых от обще-
земного референц-эллипсоида. Такая привязка обеспечивает согласован-
ность с глобальными геодезическими системами координат и повышает 
физическую корректность краевой задачи. 

До появления ГНСС высокоточное определение геодезических высот 
было недоступным при гравиметрических съемках, поэтому при вычисле-
нии аномалий силы тяжести использовались нормальные высоты. В ре-
зультате аномалии относились не к физической поверхности Земли, а к 
промежуточной – теллуроиду. При решении краевой задачи Молоденско-
го в качестве граничной поверхности принимается физическая поверх-
ность Земли, и отсутствие геодезических высот компенсировалось приме-
нением метода последовательных приближений. Использование чистых 
аномалий позволяет избежать итерационных процедур при определении 
аномалий высот и уклонений отвесных линий, что способствует повыше-
нию точности и устойчивости моделирования гравитационного поля. 

Методы позиционирования с помощью ГНСС, включая спутниковый 
относительный метод и метод точного точечного позиционирования 
(PPP), обеспечивают достаточную точность определения геодезических 
высот для корректного вычисления чистых аномалий силы тяжести в сво-
бодном воздухе. Это особенно актуально при проведении детальных 
наземных гравиметрических съемок, а также при аэрогравиметрических  
и морских измерениях, выполняемых с подвижных платформ. В связи с 
этим современные гравиметрические исследования проводят с обязатель-
ным сопровождением ГНСС-измерений. 

Однако существующие архивы гравиметрической информации в Рос-
сийской Федерации и за её пределами в подавляющей степени представ-
лены картами смешанных аномалий силы тяжести. Значительная часть 
этих данных представлена в редукции Буге, которые не могут быть непо-
средственно использованы для моделирования глобального или регио-
нального гравитационного поля. Таким образом, возникает актуальная за-
дача предварительной обработки и преобразования разнотипных грави-
метрических данных, полученных из различных источников, с целью их 
унификации и приведения к единой системе – чистым аномалиям, отне-
сённым к физической поверхности Земли. 

В этой связи для обеспечения высокоточного моделирования гравита-
ционного поля Земли особую важность приобретает анализ общей грави-
метрической изученности территории Российской Федерации, оценка со-
става и типов доступных данных, а также идентификация потенциальных 
проблем, связанных с предварительной обработкой гравиметрической ин-
формации, включая различия в системах высот, методах редуцирования  
и пространственном разрешении. 
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3.1.2. Подготовка и анализ данных чистых и смешанных  
аномалий силы тяжести, полученных по результатам 

наземных гравиметрических измерений 

Гравитационное поле Земли (ГПЗ) является объектом широкого науч-
ного изучения, и состояние его изученности постоянно развивается.  

Наиболее полные базы данных ГПЗ сосредоточены в научных центрах, 
фондах, компаниях и институтах, которые осуществляют сбор, обработку 
и хранение информации, полученной различными методами и аппарату-
рой.  

Гравиметрические данные NCEI. Одним из наиболее известных дер-
жателей гравитационных данных является Национальный центр атмо-
сферных исследований (National Centers for Environmental Information, 
NCEI), который входит в состав Национального управления океанических 
и атмосферных исследований (National Oceanic and Atmospheric 
Administration, NOAA) в США. NCEI предоставляет доступ к широкому 
спектру геофизических данных, включая наземные и морские гравиметри-
ческие съемки, сетки, модели и геоиды [5]. 

Параметры данных включают координаты пункта (широту, долготу), 
аномалию Буге (суша), аномалию в свободном воздухе (океан), а также 
измеренное значение абсолютной силы тяжести и высоту над уровнем мо-
ря. Около 70 процентов информации представляют собой данные, полу-
ченные из наблюдений на региональных станциях и измерений абсолют-
ной силы тяжести.  

Международное гравиметрическое бюро (Bureau International 
Gravimetric (BGI)) [6] представляет собой научную службу Международ-
ной ассоциации геодезии – International Association of Geodesy (IAG), 
Международного союза геодезии и геофизики – International Union of 
Geodesy and Geophysics (IUGG), Глобальной системы геодезических 
наблюдений – Global Geodetic Observing System (GGOS). BGI обеспечива-
ет сбор данных и долгосрочную доступность результатов гравиметриче-
ских измерений, полученных на поверхности Земли, внося свой вклад  
в GGOS. В настоящее время она содержит более 12 миллионов относи-
тельных измерений, полученных в ходе наземных, морских и воздушных 
гравиметрических исследований.  

Данные об измерениях силы тяжести предоставляются по запросу  
и могут быть получены для любого участка земной поверхности, не пре-
вышающего размеры 20 20×  , и не более 10 000 значений. При запросе 
информации на территорию, превышающую указанные размеры, доступ  
к данным предоставляется, если запрашивающая сторона внесла свой 
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вклад в базу данных. Важно отметить, что полная база данных, охватыва-
ющая всю поверхность земного шара, не предоставляется.  

Гравиметрические данные публично-правовой компании «Роскадастр» 
(ППК «Роскадастр»). ППК «Роскадастр» предоставляет всем заинтересо-
ванным лицам сведения единой электронной картографической основы, 
пространственные данные и материалы федерального фонда простран-
ственных данных (ФФПД), а также пространственные метаданные. 
Предоставление материалов и данных из ФФПД осуществляет через Фе-
деральный портал пространственных данных (ФППД). 

Федеральный портал пространственных данных является федеральной 
государственной информационной системой (ФППД, ГИС ФППД, портал) 
и создан в рамках национальной программы «Цифровая экономика Рос-
сийской Федерации» [7]. Портал представляет собой интернет-витрину, 
которая позволяет пользователям всех категорий получить полную ин-
формацию об обеспеченности территории Российской Федерации карто-
графическими и геодезическими материалами, хранящимися в государ-
ственных фондах пространственных данных (в настоящее время идет 
наполнение метаданных). Портал имеет открытый и закрытый сегменты. 
Для получения закрытой информации необходима авторизация в личном 
кабинете от имени руководителя организации [8].  

Российский федеральный геологический фонд. Для выполнения анали-
за данных чистых и смешанных аномалий силы тяжести, полученных по 
результатам наземных гравиметрических измерений, основным источни-
ком получения информации на территорию Российской Федерации явля-
ется Единый фонд геологической информации о недрах (ЕФГИ) [9]. 
ЕФГИ – это федеральная государственная информационная система 
(ФГИС), содержащая реестр первичной и интерпретированной геологи-
ческой информации о недрах, имеющихся в федеральном фонде геоло-
гической информации и его территориальных отделениях, фондах геоло-
гической информации субъектов РФ, органах государственной власти 
РФ и органах государственной власти субъектов РФ, в организациях, 
находящихся в ведении указанных органов государственной власти.  
В ЕФГИ содержится первичная и интерпретированная геологическая 
информация о недрах, представленная на электронных носителях и име-
ющаяся в федеральном фонде и его территориальных отделениях. 

ЕФГИ является открытым для всех категорий пользователей. Реестр 
открытых данных включает в себя краткое описание, перечень геологи-
ческих документов, хранящихся в Росгеолфонде, территориальных 
фондах геологической информации и их филиалах. Сведения в ЕФГИ 
представлены в виде таблицы с набором наиболее информативных ат-
рибутов документа, интерактивную электронную карту изученности 
территорий разной направленности. 
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Интерактивная электронная карта изученности территорий России 
используется для максимально простого и быстрого получения крат-
кой справочной информации по ключевым информационным блокам, 
имеющим отношение к недропользованию в нашей стране: изученность 
территории, недропользование, геологическое строение территории, 
геофизические карты (гравиметрическая изученность), геохимические 
карты, инженерно-геологические карты. Все материалы, доступные на 
сайте, подготовлены отраслевыми организациями, находящимися в веде-
нии Роснедра: ФГБУ «ВСЕГЕИ», ФГБУ «Росгеолфонд», ФГБУ «ВНИИО-
кеангеология» и др. 

В данном исследовании выполнен анализ возможности использования 
справочной информации открытого доступа в ЕФГИ, полученной на сайте 
в 2021 году (рис. 3.1) для подготовки данных чистых и смешанных анома-
лий силы тяжести по результатам наземных гравиметрических измерений 
[9].  

 

 

Рис. 3.1. Гравиметрическая изученность территории России [9] 
 
 
Данные о наземных гравиметрических работах, выполненных в мас-

штабах 1:10 000, 1:25 000, 1:50 000, 1:100 000, 1:200 000, 1:500 000, 
1:1 000 000, на территории федеральных округов Российской Федерации  
в процентном соотношении к занимаемой площади представлены  
в табл. 3.1 и 3.2. Визуализация результатов, приведенных в табл. 3.1 и 3.2, 
представлена на картограммах гравиметрической изученности территории 
Российской Федерации (рис. 3.2–3.6). 
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Таблица 3.1 
Данные о наземных гравиметрических работах, выполненных в масштабах  
1:10 000, 1:25 000, 1:50 000, на территории федеральных округов Россий-

ской Федерации в процентном соотношении к занимаемой площади 

 

Федеральный 
округ 

Площадь ФО 
(км2) 
[10] 

Масштаб  
1:10 000 

Масштаб 
 1:25 000 

Масштаб 
 1:50 000 

Площадь 
(км2) 

% 
 

Площадь 
(км2) 

% 
 

Площадь 
(км2) 

% 
 

1 Северо-Западный 1 686 972 33 739 2 50 609 3 590 440 35 

2 Центральный 650 205 97 531 15 32 510 5 325 103 50 

3 Приволжский 1 036 975 207 395 20 362 941 35 518 488 50 

4 
Южный 556 661 13 435 

3 
2 

31 348 
7 
6 

246 302 
55 
44 

5 Северо-
Кавказский 

170 439 0 0 25 566 15 68 176 40 

6 Уральский 1 818 497 317 295 7 454 624 25 454 624 25 

7 Сибирский 4 361 727 130 852 3 436 173 10 1 090 431 25 

8 Дальневосточный 6 952 555 0 0 208 577 3 695 255 10 

 
Таблица 3.2  

Данные о наземных гравиметрических работах, выполненных в масштабах 
1:100 000 и 1:200 000, на территории федеральных округов Российской 

Федерации в процентном соотношении к занимаемой площади 

 
Федеральный  

округ 
Площадь ФО 

(км2) 

Масштаб  
1:100 000 Масштаб 1:200 000 

Площадь 
(км2) 

% 
 

Площадь 
(км2) 

% 
 

1 Северо-
Западный 1 686 972 253 045,80 15 1 349 577,60 80 

2 Центральный 650 205 130 041,00 20 552 674,25 85 
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Окончание табл. 3.2  
 

Федеральный  
округ 

Площадь ФО 
(км2) 

Масштаб  
1:100 000 

Масштаб 1:200 000 

Площадь 
(км2) 

% 
 

Площадь 
(км2) 

% 
 

3 Приволжский 1 036 975 518 487,50 50 933 277,50 90 

4 Южный 556 661 380 647,85 85 403 038,90 90 

5 Северо-
Кавказский 

170 439 144 873,15 85 153 395,10 90 

6 Уральский 1 818 497 727 398,80 40 1 727 572,15 95 

7 Сибирский 4 361 727 654 259,05 15 3 489 381,60 80 

8 Дальневосточ-
ный 

6 952 550 1 042 882,50 15 5 214 412,50 75 

 

 

Рис. 3.2. Картограмма гравиметрической изученности территории  
Российской Федерации по федеральным округам в масштабе 1:10 000 

 



 

204 

 

Рис. 3.3. Картограмма гравиметрической изученности территории  
Российской Федерации по федеральным округам в масштабе 1:25 000 
 

 

Рис. 3.4. Картограмма гравиметрической изученности территории  
Российской Федерации по федеральным округам в масштабе 1:50 000 



 

205 

 

Рис. 3.5. Картограмма гравиметрической изученности территории  
Российской Федерации по федеральным округам в масштабе 1:100 000 

 

 

Рис. 3.6. Картограмма гравиметрической изученности территории  
Российской Федерации по федеральным округам в масштабе 1:200 000 
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Анализ данных наземных гравиметрических работ на территории Рос-
сийской Федерации позволяет сделать следующие выводы: 

площадь гравиметрической изученности территории России в масшта-
бе 1:10 000 составляет 1 800 246,42 км2, что соответствует 10,51 % от 
площади территории Российской Федерации; 

площадь гравиметрической изученности территорий России в масшта-
бе 1:25 000 составляет 1 602 347,43 км2, что соответствует 9,36 % от пло-
щади Российской Федерации; 

площадь гравиметрической изученности территорий России в масшта-
бе 1:50 000 составляет 3 988 818,35 км2, что соответствует 23,29 % от 
площади Российской Федерации; 

площадь гравиметрической изученности территорий России в масштабе 
1:100 000 составляет 3 851 635,65 км2, что соответствует 22,49 % от пло-
щади Российской Федерации; 

площадь гравиметрической изученности территории России в масштабе 
1:200 000 составляет 13 823 329,60 км2, что соответствует 80,71 % от пло-
щади Российской Федерации. 

При проведении анализа гравиметрических работ особое внимание 
уделено изученности территории Новосибирской области (НСО).  

В связи с тем, что для разработки теории и алгоритмов создания высо-
коточных моделей ГПЗ и его трансформант на основе данных аномалий 
силы тяжести необходимо располагать результатами гравиметрических 
измерений с точностью не хуже 1 мГал, исходной информацией могут 
служить результаты гравиметрических работ, представленных в масшта-
бах 1:200 000 и крупнее [11]. 

Данные о наземных гравиметрических работах, выполненных в мас-
штабе 1:200 000, в процентном соотношении к площади территории райо-
нов Новосибирской области представлены в таблице 3.3 и в виде карто-
граммы гравиметрической изученности (рис. 3.7). 

 
Таблица 3.3  

Данные о наземных гравиметрических работах, выполненных в масштабе  
1:200 000, в процентном соотношении  

к площади территории районов Новосибирской области 

№ Район НСО Площадь района (км2) 
[12] 

Масштаб 1:200 000 
Площадь 

(км2) % 

1 Кыштовский  11 101 7 770,7 70 
2 Северный  15 569 6 219,2 40 
3 Убинский  13 869 5 504,0 40 
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Окончание табл. 3.3  

№ Район НСО Площадь района (км2) 
[12] 

Масштаб 1:200 000 
Площадь 

(км2) % 

4 Колыванский  10 573 3 171,9 30 
5 Мошковский  2 590 259,1 10 
6 Болотинский 3 400 337,4 10 
7 Усть-Таркский 4 060 1 218,3 30 
8 Венгеровский  6 312 6 312,0 100 
9 Куйбышевский  8 817 2 646,9 30 
10 Каргатский  5 600 5 600,0 100 
11 Татарский  5 100 1 948,0 40 
12 Чановский  5 515 5 515,0 100 
13 Барабинский  5 400 5 400,0 100 
14 Чистоозерный  5 688 2 275,2 40 
15 Купинский  5 809 5 809,0 100 
16 Здвинский  4 970 4 970,0 100 
17 Доволенский  4 422 4 422,0 100 
18 Чулымский  8 559 8 559,0 100 
19 Баганский 3 368 3 368,0 100 
20 Карасукский  4 320 4 320,0 100 
21 Краснозерский  5 329 5 329,0 100 
22 Кочковский  2 518 2 518,0 100 
23 Коченевский  5 070 5 070,0 100 
24 Новосибирский  3 496 3 496,0 100 
25 Тогучинский  6 060 6 060,0 100 
26 Ордынский  4 748 4 748,0 100 
27 Искитимский 4 362 4 362,0 100 
28 Маслянинский  3 450 103,6 3 
29 Сузунский 4 745 142,4 3 
30 Черепановский 2 936 87,2 3 

  177 756   
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Рис. 3.7. Картограмма гравиметрической изученности  
в масштабе 1:200 000 районов Новосибирской области  

 
 
Анализ информации о гравиметрических съемках в масштабах 

1:10 000; 1:25 000; 1:50 000; 1:100 000; 1:200 000; 1:500 000; 1:1 000 000, 
выполненных на территории Новосибирской области, позволяет сделать 
следующие выводы: 

площадь гравиметрической изученности территории Новосибирской 
области в масштабе 1:200 000 составляет 113 042,91 км2, что соответству-
ет 63,6 % от площади территории НСО; 

площадь гравиметрической изученности территории Новосибирской 
области в масштабе 1:1 000 000 составляет 108 416,50 км2, что соответ-
ствует 61,0 % площади территории НСО. 

В настоящее время получение доступа к информационным ресурсам и 
системам, администрируемым ФГБУ «Росгеолфонд», в том числе к интер-
активным картам изученности, предоставляется только на основании раз-
решения Федерального агентства по недропользованию [13]. 

Подготовка материала для выполнения анализа данных аномалий силы 
тяжести, полученных по результатам наземных гравиметрических измере-
ний, осуществлена на основе информации, предоставленной Федеральным 
бюджетным учреждением «Территориальный фонд геологической инфор-
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мации (ТФГИ) по Сибирскому федеральному округу» (Новосибирск)  
и Отделениями ТФГИ Субъектов РФ (Томск, Омск, Барнаул, Кемерово).  

В период 2013–2014 гг. сотрудниками Сибирской государственной 
геодезической академии (ныне СГУГиТ) в рамках Государственного зада-
ния Минобрнауки РФ «Развитие геоинформационного обеспечения терри-
торий на основе системы ГЛОНАСС, данных дистанционного зондирова-
ния Земли и других результатов космической деятельности» для успешно-
го выполнения научно-исследовательской работы «Разработка и исследо-
вание комплексной технологии координатно-гравитационного обеспече-
ния локальных спутниковых геодезических сетей активных (постоянно 
действующих) базовых станций (СГС АБС)» получены результаты назем-
ных гравиметрических измерений. На территорию Новосибирской обла-
сти и на ее ближайшие окрестности (в стокилометровой зоне – территория 
Томской, Омской, Кемеровской областей и Алтайского края) получены 
сведения о проведении гравиметрических съемок, которые содержатся  
в отчетах гравиметрических партий, выполнивших гравиметрическую 
съемку.  

Полученные материалы гравиметрических съемок выполнены для про-
гноза глубинного геологического строения территории Западно-
Сибирской плиты и ее обрамления. Небольшой объем исследований  
в масштабах 1:50 000 и 1:25 000 проводился в пределах месторождений 
полезных ископаемых и был направлен на поиски и уточнение границ ру-
доносных структур и залежей углеводородов. 

Всего на указанной территории за период с 1954 по 2010 гг. силами 
разных организаций выполнено свыше 100 съемок масштаба от  
1 :1 000 000 до 1:10 000. 

Полученные материалы гравиметрических съемок в масштабах  
1:200 000 и 1:100 000 на указанную территорию представлены в виде кар-
тограмм (приложение А, рис. А.1–A.4). 

Основными особенностями гравиметрической изученности исследуе-
мой территории являются [14]: 

– качество гравиметрических работ, выполненных в разное время, 
весьма отличается друг от друга; 

– до 30 % территории покрыто съемками, выполненными до  
1957 года, которые не соответствуют современным требованиям выполне-
ния гравиметрических работ; 

– 35 % гравиметрических съемок масштаба 1:100 000 и крупнее вы-
полнено без соблюдения требований к топографо-геодезическому обеспе-
чению, предусматривающему жесткие нормы погрешности определения 
значений высот и координат пунктов; 

– гравиметрические съемки масштабов 1:200 000, 1:100 000 и крупнее, 
выполненные с начала 1960-х годов и до 2010 г. увязаны с пунктами госу-
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дарственных опорных сетей I и II класса и между собой, выполнены по 
современным методикам, надежными приборами. Их качество не подвер-
гается сомнению.  

Визуализация результатов анализа гравиметрических работ на терри-
торию Новосибирской области и ее ближайшие окрестности (в стокило-
метровой зоне – территория Томской, Омской, Кемеровской областей  
и Алтайского края) представлена на картограммах (рис. 3.8, 3.9). 

 

Рис. 3.8. Картограмма результатов гравиметрических съемок в масштабах 
1:100 000 и 1:20 000: 1 – представляет исторический интерес (масштаб 

1:200 000); 2 – информация не полная;  
3 – представляет исторический интерес (масштаб 1:100 000)
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Рис. 3.9. Картограмма результатов гравиметрических съемок в масштабах 
1:100 000 и 1:20 000: 1 – результаты гравиметрических съемок (масштаб 
1:200 000); 2 – информация не полная и низкое качество материала; 3 – 

результаты гравиметрических съемок (масштаб 1:100 000) 
 
 
Анализ материалов гравиметрических работ на исследуемую террито-

рию позволил выбрать 3 500 опорных пунктов гравиметрических сетей 2  
и 3 классов, на которых определены значения силы тяжести с погрешно-
стью от ± 0,03 мГал до ± 0,05 мГал.  

Планово-высотное обеспечение гравиметрических работ на опорных 
пунктах выполнено в соответствии с требованиями инструкции по разви-
тию высокоточной государственной гравиметрической сети России [15]. 
Плотность опорных гравиметрических пунктов на исследуемой террито-
рии неравномерная, есть зоны без покрытия пунктов. Плотность грави-
метрических пунктов увеличивается к юго-востоку, что соответствует 
требованиям проведения гравиметрических работ на территориях с гор-
ным и предгорным рельефом. На юге и юго-западе территории преоблада-
ет равнинный рельеф, что сказывается и на плотности пунктов, их количе-
ство уменьшается. На севере Новосибирской области, на границе с Том-
ской областью при гравиметрических исследованиях выполнена более де-
тальная гравиметрическая съемка. 
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Расположение опорных гравиметрических пунктов на исследуемой 
территории приведено на рис. 3.10. 

 

 
Рис. 3.10. Расположение опорных пунктов гравиметрических сетей  

2 и 3 классов на территории Новосибирской области  
и прилегающих территорий 

 
 
По наземным измерениям силы тяжести на территории Новосибирской 

области и ее ближайших окрестностей в стокилометровой зоне (террито-
рия Томской, Омской, Кемеровской областей и Алтайского края) вычис-
лены аномалии силы тяжести в редукции за свободный воздух: 

 

 0 0,3087изg g hδ = − γ + ,                                   (3.3) 
 

где h  – геодезическая высота для «чистых» аномалий или нормальная вы-
сота для «смешанных»;  

0γ  – нормальное значение силы тяжести на поверхности эллипсоида 
относимости получено по формуле Сомильяна [16]:  
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где 1p

e

b
k

a
γ

= −
γ

;  

a  и b  – соответственно большая и малая полуось эллипсоида;  
pγ  и eγ  – соответственно полярное и экваториальное нормальное зна-

чение силы тяжести;  
2e – квадрат эксцентриситета эллипсоида;  

B  – геодезическая широта. За эллипсоид относимости принят эллип-
соид WGS-84. 

Редуцирование нормального значения силы тяжести на высоту точки 
выполнялось по формуле: 

 

 0 0,3087h hγ = γ − ,                                        (3.5) 
 

где h  – высота точки измерения силы тяжести. 
На рис. 3.11 приведена картосхема смешанных аномалий силы тяже-

сти, полученных по результатам гравиметрических работ на территории 
Новосибирской области и прилегающих территориях. 

 

 
Рис. 3.11. Картосхема смешанных аномалий силы тяжести,  

полученных по результатам гравиметрических работ на территории  
Новосибирской области и прилегающих территориях 
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На рис. 3.12 приведена картосхема чистых аномалий силы тяжести, 
полученных по результатам гравиметрических работ на территории Ново-
сибирской области и ее ближайших окрестностях в стокилометровой зоне 
(территория Томской, Омской, Кемеровской областей и Алтайского края). 

 

 

Рис. 3.12. Картосхема чистые аномалии силы тяжести, полученных по ре-
зультатам гравиметрических работ на территории  

Новосибирской области и прилегающих территориях 
 
 
Выводы по 3.1.2. По данным, предоставленным ФГУ «Территориаль-

ный фонд геологической информации (ТФГИ) по Сибирскому федераль-
ному округу» выполнена оценка качества результатов гравиметрических 
работ на территорию Новосибирской области и ее ближайшие окрестно-
сти (в стокилометровой зоне – территория Томской, Омской, Кемеровской 
областей и Алтайского края), которая позволяет сделать следующие выво-
ды: 

− территория Новосибирской области покрыта гравиметрическими 
съемками масштаба 1:200 000 требуемого качества на 39,34 %; территория 
Омской области – 21,43 %; территория Томской области – около 1 %; 
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− создана база данных гравиметрической информации на исследуемую 
территорию в масштабах 1:200 000, 1:100 000 в цифровом виде; 

− точность аномалий силы тяжести, полученных по наземным грави-
метрическим измерениям на исследуемую территорию, соответствует тре-
бованиям точности гравиметрической съемки масштабов 1:200 000  
и 1:100 000; 

− для анализа аномалий силы тяжести, полученных по данным назем-
ных гравиметрических измерений, необходимо использовать результаты 
гравиметрических съемок с учетом современных требований, предъявляе-
мых к точности геодезической основы и гравиметрической аппаратуры.  

3.1.3. Подготовка материала  
для выполнения анализа данных чистых  
и смешанных аномалий силы тяжести,  
полученных по результатам наземных,  
спутниковых и нивелирных измерений 

Помимо архивов наземных гравиметрических измерений, имеются два 
дополнительных источника информации о гравитационном поле Земли: 
каталоги государственной нивелирной сети, а также результаты астроно-
мических и ГНСС-определений на пунктах государственной геодезиче-
ской сети (ГГС). Разность геодезической высоты, определяемой по ГНСС-
наблюдениям, и нормальной высоты формирует геометрическую анома-
лию высоты. Разность астрономических и геодезических координат ис-
пользуется для вычисления уклонений отвесной линии в меридиане и пер-
вом вертикале. Указанные данные применяются при определении пара-
метров гравитационного поля и решении ряда дополнительных задач. 

Первая задача – оценка соответствия моделей гравитационного поля 
Земли наземным измерениям. Аномалии высот, вычисленные с использо-
ванием математической модели геопотенциала, сравниваются с разно-
стью, образованной из геодезических и нормальных высот на нивелирных 
пунктах. Эта разность является одним из важным показателем точности 
моделирования гравитационного поля.  

Вторая задача – выявление локальных геометрических деформаций 
нивелирной сети на основе совместной обработки результатов нивелир-
ных, астрономических и спутниковых измерений. При построении моде-
лей гравитационного поля в ряде стран оцениваются деформации высот-
ных сетей, обусловленные накоплением систематических ошибок [17, 38]. 

Третья задача – разработка высокоточных региональных моделей гра-
витационного поля Земли. В источнике [19] предложен способ определе-
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ния локальной модели внешнего гравитационного поля на ограниченных 
участках земной поверхности, названный автором операторным. Данный 
способ предусматривает решение задачи моделирования гравитационного 
поля не только в виде функции двух координат, описывающей трансфор-
манту квазигеоида, но и в виде трёхмерного объекта – потенциала ускоре-
ния силы тяжести как функции трёх координат:  

 

 ( ) ( ), , , , , , , , , , , , , ,nm nmW W B L H c c L B H H g C S= = γ λ ϕ α ζ ,       (3.6) 
 

где B , L , H  – геодезические долгота, широта и высота на общеземном 
эллипсоиде (определяемые по ГНСС-измерениям); 

c  – вектор параметров модели характеристик гравитационного поля, 
полученный по совокупности измерительных данных, доступных на ло-
кальном участке; 

H γ  – нормальная высота точки из каталогов государственной ниве-
лирной сети; 

λ , ϕ , α  – астрономические долгота, широта и азимут;  
g  – ускорение силы тяжести;  
ζ  – аномалия высоты; 

nmC , nmS  – сферические гармонические коэффициенты глобальной 
геопотенциальной модели (например, EGM2008). 

Все трансформанты гравитационного поля одновременно используют-
ся при решении обратной задачи – определении параметров модели 

( ), , ,W B L H c , что не реализовано в интегральном подходе М. С. Моло-
денского. При этом частично операторный способ реализован методом 
конечных элементов в программном комплексе Digital Finite Element 
Height Reference Surface (DFHRS) [20]. В нем предусмотрена возможность 
определения параметров уровенной поверхности только по данным астро-
номических определений уклонений отвесных линий [21]. Это обеспечи-
вает использование данных квазизенитных астрономических определений, 
которые являются самостоятельным источником информации при моде-
лировании гравитационного поля Земли. 

Четвёртая задача – аппроксимация значений аномалии силы тяжести  
в районах с недостаточной гравиметрической изученностью. На основе 
подхода, предложенного в [19], методом среднеквадратического прогноза 
осуществляется оценка средних значений силы тяжести по совокупности 
данных: уклонения отвесных линий, полученные из астрономических 
определений; аномалии высот, определённые по результатам спутниково-
го нивелирования; параметры глобальных моделей гравитационного поля. 
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Указанный подход будет полезен на территориях с фрагментарным охва-
том гравиметрической съёмкой масштаба 1:200 000, включая Новосибир-
скую область, где участки, не охвачённые съёмкой, составляют 40 % от 
общей площади. 

Пятая задача – преобразование смешанных аномалий силы тяжести  
в чистые с использованием информации из каталогов ГНС и ГГС. Преоб-
разование выполняется на основе существующих глобальных моделей вы-
сот с уточнением на пунктах ГГС и ГНС.  

По данным ППК «Роскадастр» на 2020 г., на территории Новосибир-
ской области расположено более 3 600 пунктов ГГС. Из них 133 пункта 
относятся к 1-му классу, 1 147 – ко 2-му классу. Количество пунктов с 
астрономическими определениями координат составляет около 200. Ко-
личество пунктов ГГС, на которых проведены ГНСС-измерения на  
2016 г., составляет 327, что соответствует 9 % от общего числа (рис. 3.13) 
[22]. Распределение пунктов носит неравномерный характер: в малонасе-
лённых северных районах Новосибирской области ГНСС-измерения на 
пунктах ГГС не выполнялись либо не включались в состав регионального 
отделения фонда пространственных данных. Плотность пунктов с ГНСС-
измерениями составляет 1 пункт на 500 км². 

В результате подготовки материалов для анализа данных чистых  
и смешанных аномалий силы тяжести, полученных по результатам назем-
ных спутниковых и нивелирных измерений, установлено, что количество 
пунктов ГГС с выполненными ГНСС-наблюдениями составляет 9 % от 
общего числа пунктов государственной геодезической сети на территории 
Новосибирской области. Дополнительные спутниковые наблюдения на 
пунктах ГГС позволят существенно повысить информативность фонда 
измерительной информации о гравитационном поле Земли, без привлече-
ния дорогостоящих наземных гравиметрических съемок. 
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Рис. 3.13. Распределение пунктов ГГС Новосибирской области,  

на которых выполнены ГНСС наблюдения  
 

3.1.4. Предварительная обработка архивов  
гравиметрической информации 

3.1.4.1. Методологические аспекты обработки и согласования 
гравиметрических данных в единой информационной системе 

Архивные данные измерений, характеризующих гравитационное поле 
Земли, могут существенно различаться, в зависимости от принятых моде-
лей предварительной обработки. Доступ к исходной измерительной ин-
формации позволяет избежать большинства проблем при обработке дан-
ных. В противном случае для корректного использования архивных гра-
виметрических данных требуется применение ряда преобразований, в от-
дельных случаях – допущений. Поэтому для формирования обобщённой 
базы данных гравиметрических измерений необходимо включать допол-
нительную атрибутивную информацию, обеспечивающую автоматическое 
преобразование и согласование разнородных данных. 

В ходе обработки в измеренные значения силы тяжести на гравимет-
рических пунктах вводятся поправки за геодинамические эффекты, выбор 
которых зависит от требуемой точности определения ускорения силы тя-
жести, а также техническими регламентами. Так согласно ГКНИП 04-122-
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03 [15] при развитии государственной гравиметрической сети требуется 
учитывать влияние атмосферного давления, движения полюса Земли, при-
ливов, вызванных Солнцем и Луной, а также вводить поправки за уровень 
грунтовых вод. 

Особое значение при реализации гравиметрических сетей имеет выбор 
метода учёта приливных вариаций силы тяжести, поскольку амплитуда 
поправок превышает величину других геодинамических эффектов.  
В ГКНИП 04-122-03 [15] отсутствуют формулы расчёта твердого и океа-
нических приливов. Указано лишь, что поправки должны рассчитываться 
с использованием программы «Maria», встроенной в программное обеспе-
чение абсолютного гравиметра.  

Существуют три концепции учёта приливных эффектов: полный учёт 
прилива (tide-free), средний прилив (mean-tide) и нулевой прилив (zero-
tide). Приливообразующий потенциал включает постоянную (независя-
щую от времени) и переменную составляющие. В концепции tide-free вли-
яние притяжения Луны и Солнца исключается из всех величин, характе-
ризующих фигуру Земли и параметры гравитационного поля. В концеп-
ции mean-tide из данных удаляется только переменная часть потенциала,  
а постоянная составляющая сохраняется в геопотенциале и геометриче-
ской фигуре Земли. В концепции zero-tide постоянная и переменная со-
ставляющие исключаются только из величин, характеризующих гравита-
ционное поле, но сохраняются в параметрах фигуры Земли. 

Международная ассоциация геодезистов рекомендовала использовать 
концепцию mean-tide для построения Международной системы высот, что 
закреплено резолюцией 2015 г. [23]. Формулы и модели расчёта поправок 
за приливные эффекты, атмосферные и океанические нагрузки, а также за 
смещение полюса, стандартизированы в соглашениях МСВЗ 2010 г. [24]. 

Для корректного совместного использования данных наземной и кос-
мической гравиметрии необходимо согласование методов учёта геодина-
мических факторов. В базе данных гравиметрической информации должен 
быть предусмотрен отдельный атрибут, идентифицирующий тип исполь-
зуемой концепции учёта приливов и других эффектов. В программе обра-
ботки должны быть реализованы классы учёта геодинамических эффектов 
в соответствии с международными или государственными стандартами, 
включая функции перерасчёта поправок. 

При определении аномалий силы тяжести (АСТ) в гравиметрических 
пунктах в первую очередь вычисляются значения нормальной силы тяже-
сти (НСТ). Параметры нормального поля силы тяжести могут меняться  
в связи с обновлением руководящих нормативных документов. Для гра-
виметрических данных, полученных в разные эпохи, требуется согласова-
ние параметров нормального поля. В Российской Федерации для большей 
части архивных гравиметрических карт НСТ рассчитывались по междуна-
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родной формуле Гельмерта 1907 г. В действующей инструкции по грави-
разведке [25] рекомендовано использовать указанную формулу при опре-
делении аномалий силы тяжести. 

В 2016 г. утверждены новые значения гравитационного параметра, 
ускорения свободного падения на полюсе и экваторе, а также потенциала 
на уровенном эллипсоиде (Постановление Правительства Российской Фе-
дерации от 24 ноября 2016 г. № 1240 «Об установлении государственных 
систем координат, государственной системы высот и государственной 
гравиметрической системы»). Указанные параметры определяют нор-
мальное поле для эллипсоида системы координат ГСК-2011. За рубежом 
для вычисления АСТ рекомендуется применять эллипсоид GRS-80 [26], 
параметры которого отличаются от параметров эллипсоидов Красовского 
и ГСК-2011. При отсутствии учёта различий в используемых уровенных 
эллипсоидах возникает систематическая ошибка, величина которой дости-
гает 2 мГал. Таким образом, наличие в базе данных атрибута, идентифи-
цирующего тип используемого эллипсоида для расчёта нормального поля, 
необходимо для строгого перехода между системами. В базе данных 
должна быть предусмотрена таблица гравиметрических эллипсоидов,  
а в записях с измерениями – указана информация об использованном уро-
венном эллипсоиде и гравиметрических постоянных. 

Возможность восстановления исходных измерений из отчётов по гра-
виметрическим съёмкам является принципиально важным при формиро-
вании первичных баз данных. Большинство проблем согласования архив-
ных гравиметрических данных преодолимо при наличии доступа к исход-
ным измерениям. В этом случае преобразование сводится к корректному 
описанию функций перехода между эллипсоидами или учёту геодинами-
ческих эффектов. Однако исходные каталоги гравиметрических наблюде-
ний не всегда доступны. Восстановление данных невозможно, если гра-
виметрическая карта выполнена в условном уровне или условной системе 
координат. В таких случаях преобразование данных сопровождается зна-
чительной потерей точности и требует привлечения информации топогра-
фических карт. 

Указанная процедура не требуется для карт мелких масштабов, по-
скольку средняя квадратическая ошибка (СКО) интерполяции АСТ на та-
ких картах превышает порядок величин, характеризующих различие в па-
раметрах геодезических эллипсоидов и систем высот. 

Преобразования координат точек гравиметрических измерений также 
необходимо выполнять при определении БД гравиметрической информа-
ции. Все российские архивные каталоги и карты составлены в системе СК-
42. В соответствии с требованиями нормативных документов новые мате-
риалы гравиметрических съёмок должны передаваться в системе ГСК-
2011 [27]. Предельно допустимая ошибка определения координат грави-
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метрических пунктов для крупнейшего масштаба съёмки (1:5 000) состав-
ляет 2 м относительно государственной геодезической сети. Ошибка семи-
параметрического преобразования из СК-42 или СК-95 в ГСК-2011 превы-
шает указанное значение. Следовательно, программное обеспечение долж-
но предусматривать преобразование систем координат при работе с пер-
вичными базами данных гравиметрической информации, а в базе данных 
должен быть реализован атрибут принадлежности координат, по которому 
возможны преобразования с использованием стандартных библиотек. 

3.1.4.2. Преобразование смешанных аномалий  
силы тяжести в чистые 

При моделировании гравитационного поля одновременное использо-
вание чистых и смешанных аномалий недопустимо, поскольку их отличия 
достигают целых милигалов, что превосходит предельно допустимую 
полную ошибку интерполяции АСТ по самой мелкомасштабной карте 
1:500 000 согласно [25]. Поэтому для гравиметрических карт всех мас-
штабных рядов требуется преобразование аномалий силы тяжести в об-
щую систему высот. Проблема преобразования чистых аномалий силы 
тяжести в смешанные подробно рассмотрена в статье [28]. Авторы иссле-
дования считают возможным переход без потери точности при наличии 
исходных каталогов измерений. Для преобразования смешанных АСТ 
необходимо восстановить в точке наблюдения геодезическую высоту над 
эллипсоидом относимости. Для мелкомасштабных карт достаточно ис-
пользовать аномалии высот, вычисленные по глобальным моделям геопо-
тенциала типа EGM2008 или ГАО-2012. Критерием допустимости преоб-
разования смешанных аномалий силы тяжести служит соответствие вели-
чины ошибки вычисления аномалии высоты ошибке определения высоты 
гравиметрических пунктов относительно государственной системы высот 
[25]. Ошибка определения аномалии высоты по глобальным моделям оце-
нивается величиной 20 см [11]. Следовательно, преобразование смешан-
ных АСТ в чистые допустимо для масштабов 1:500 000–1:100 000 при ис-
пользовании моделей геопотенциала. Указанные модели позволяют опре-
делять аномалии силы тяжести вне горных массивов с точностью, доста-
точной для преобразования. СКО определения высот гравиметрических 
пунктов составляет 5–10 см для детальных гравиметрических съёмок. По-
этому для преобразования каталогов крупномасштабных съёмок требуется 
применение иной методики. 

Если геодезическая высота пункта гравиметрических наблюдений от-
сутствует в каталоге, то ее можно восстановить по моделям геопотенциала 
с привлечением данных ГНСС-определений на пунктах ГГС и ГНС. Искомая 
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геодезическая высота в гравиметрическом пункте будет представлять собой 
следующую комбинацию (3.7) 

 

 ( ) ( )P P PP PH H GGM GGM Hγ γ= + ζ + δζ + δ ,               (3.7) 
 

где PH γ  – нормальная высота точки наблюдений из каталогов или снятая  
с топографической карты крупного масштаба; 

( )P GGMζ  – аномалия высоты, вычисленная по глобальной модели 
геопотенциала с использованием требуемого уровенного эллипсоида; 

( )P GGMδζ  – систематическая ошибка определения аномалии высоты 
на гравиметрическом пункте P; 

PH γδ  – локальная систематическая ошибка нивелирной сети. 
Задача повышения точности преобразования смешанных АСТ из ар-

хивных каталогов гравиметрической информации сводится к оценке па-
раметра ( )Δ P PH GGM H γ= δζ + δ . Эта комбинация будет достигать метро-
вых значений и ее трудно разделить на составляющие. Ожидается плавное 
изменение функции ΔH . Её параметры следует определять эмпирически 
на пунктах государственной нивелирной сети с использованием спутни-
ковых измерений относительным методом или PPP. Значения поправок 
ΔH  требуется интерполировать в точки гравиметрических измерений  
с применением подходящих интерполирующих функций. 

Нивелирная сеть представляет собой единое геометрическое построе-
ние, в котором нормальные высоты получены путем уравнивания методом 
наименьших квадратов. Следовательно, систематические ошибки ниве-
лирной сети должны изменяться плавно вдоль полигонов уравнивания. 
Функция геопотенциала является гладкой по определению, а глобальные 
модели гравитационного поля Земли (ГПЗ) допускают линейную интер-
поляцию аномалий высот и уклонений отвесных линий по регулярной 
сетке. Поэтому систематические ошибки нивелирных сетей и определения 
аномалий высот по моделям ГПЗ также могут быть интерполированы на 
регулярной сетке с некоторой погрешностью. Так СКО определения нор-
мальных высот ГНСС-нивелированием при на практике достигает уровня 
допустимых ошибок нивелирования IV класса [22, 29]. 

Фонд пространственных данных ППК «Роскадастр» имеет большой 
массив спутниковых наблюдений, проведенных на пунктах государствен-
ной геодезической сети по всей стране с целью построения матриц де-
формаций [17]. Следовательно, есть все предпосылки для высокоточного 
преобразования архивов смешанных аномалий по всей стране. 
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Требуемая погрешность измерения аномалий силы тяжести для самой 
детальной съемки составляет 0,015 мГал (масштаб 1:5 000). Если нор-
мальные высоты гравиметрических пунктов определены с ошибкой 5 см, 
то для преобразования смешанных аномалий силы тяжести в чистые без 
потери точности требуется вычислить геодезическую высоту с ошибкой 
не хуже 2 см. Современные модели геопотенциала не обеспечивают вы-
числение аномалий высот в произвольной точке с указанной точностью. 
Следовательно, ошибка чистой аномалии силы тяжести после преобразо-
вания превысит ошибку смешанной аномалии. Повышение качества пере-
хода возможно при использовании итерационного подхода. На первом 
этапе следует выполнить преобразование смешанных аномалий в чистые с 
применением уточненной на пунктах ГНС модели геопотенциала. Затем 
необходимо уточнить значения аномалий высот в гравиметрических пунк-
тах с использованием преобразованных АСТ. Вычисленные по формуле 
Молоденского аномалии высот используются для повторного преобразо-
вания смешанных аномалий в чистые на втором этапе итерации. Указан-
ный подход заменяет последовательные приближения краевой поверхно-
сти к физической поверхности Земли процедурой итерационного уточне-
ния чистых АСТ. 

В результате формула связи чистых и смешанных аномалий силы тя-
жести приобретет следующий вид:  

 

 int( ( ) )P P P Pg g GGM H
H
∂γ

δ = ∆ + ζ + ∆
∂

,                 (3.8) 
 

где int
PH∆  – интерполированное значение поправки ΔH  за систематиче-

ские ошибки определения аномалий высот и нивелирной сети. 
Ошибка определения поправки зависит от интерполирующей функции, 

плотности и качества данных из каталогов государственный нивелирной 
сети, качества спутниковых наблюдений. Квадрат ошибки преобразования 
аномалий силы тяжести приблизительно будет иметь следующий вид:  

 

 ( )
2

2 2 2 2
Pg int H H

m m m m
H γδ
∂γ = + + ∂ 

,                    (3.9) 

 

где intm  – ошибка интерполирования поправки ΔH ; 

Hm  – ошибка определения геодезической высоты по результатам 
спутниковых определений; 

H
m γ  – ошибка геометрического нивелирования.  
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Оценить верхнюю границу погрешности преобразования АСТ из сме-
шанных в чистые можно по параметрам, входящим в формулу (3.5). Точ-
ность определения геодезической высоты методами спутникового пози-
ционирования зависит от множества факторов: используемого оборудова-
ния, продолжительности и условий измерений, ошибки измерения высоты 
антенны, удаленности пункта спутниковых наблюдений от базовой стан-
ции. Допускаемая приборная погрешность определения геодезической вы-
соты составляет 5 мм + 0,5 мм/км для современной мультисистемной 
двухчастотной спутниковой аппаратуры. Верхнюю границу возможных 
расстояний между базовой станцией и позицией определяемого пункта 
можно оценить величиной в 100 км. Средние расстояния между пунктами 
высокоточной геодезической сети (ВГС) составляют 150–200 км, поэтому 
верхнюю границу можно считать, как половину среднего значения расстоя-
ний. Следовательно, верхний предел допускаемой ошибки определения гео-
дезической высоты на пунктах нивелирной сети составит 5,5 см. 

Большая часть пунктов ГНС относится к IV классу, поэтому верхний 
предел ошибки геометрического нивелирования определяется по допу-
стимой невязке в полигоне IV класса. Допустимая невязка задаётся выра-
жением 20 мм* L  с максимальной длиной линии для необжитых террито-
рий в 80 км. Таким образом, СКО нивелирования примет значение 18 см.  
В ошибку положения нивелирного пункта должна включаться неизвестная 
накопленная систематическая ошибка, зависящая от относительного по-
ложения пункта по отношению к начальному реперу нивелирной сети. 

Величина ошибки интерполирования будет зависеть от плотности пунк-
тов ГНС, включенных в процедуру вычисления поправки ΔH , шага регу-
лярной сетки модели и интерполирующей функции. Для определения оп-
тимальных условий интерполирования поправок ΔH  требуется отдельное 
исследование с привлечением большого массива данных ГНСС-
определений на пунктах ГГС в различных регионах Российской Федерации. 

Таким образом, можно оценить предельную ошибку преобразования 
АСТ из смешанных в чистые величиной 0,05 мГал. Эта ошибка не вклю-
чает погрешность интерполирования АСТ. Преобразовать аномалии силы 
тяжести без потери точности можно для каталогов гравиметрических из-
мерений, формировавшихся для создания карт до масштаба 1:25 000 (табл. 
3.4). Погрешность чистых АСТ возрастет в 4 и 2 раза для каталогов мас-
штабов 1:5 000 и 1:10 000 соответственно без учета влияния ошибки ин-
терполирования величины ΔH . Реальная ошибка преобразования АСТ 
может оказаться ниже приведенной оценки, так как параметры Hm  и 

H
m γ  

взяты по самому низкому классу нивелирования, предельно возможным 
длинам полигонов нивелирных сетей и расстояниям между станциями 
спутниковых определений. При этом гравиметрические съемки для со-
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ставления крупномасштабных карт имеют малую долю всего архива ин-
формации о гравитационном поле Земли на территории РФ. 
 

Таблица 3.4 
Оценка СКО преобразования АСТ из смешанных в чистые по формуле 3.9 

Масштаб карты  
(сечение изоаномал), 

мГал 

СКП определения  
наблюденных значений 

АСТ, мГал 

СКП  
определения 

высот, м 

Оценка СКП АСТ  
после преобразования 

из смешанных  
в чистые, мГал 

1:500 000 (5) 0,500 5,00 0,50 

1:200 000 (2) 0,400 2,50 0,40 

1:100 000 (1) 0,300 1,20 0,31 

1: 50 000 (0,5) 0,150 0,70 0,16 

1: 50 000 (0,25) 0,070 0,35 0,09 

1:25 000 (0,25) 0,060 0,35 0,08 

1:25 000 (0,2) 0,060 0,25 0,08 

1:10 000 (0,2) 0,060 0,20 0,08 

1:10 000 (0,1) 0,030 0,10 0,07 

1:5 000 (0,1) 0,030 0,10 0,07 

1:5 000 (0,05) 0,015 0,05 0,06 

 
Преобразовать аномалии силы тяжести с достаточной точностью мож-

но только при условии обеспечения гладкости функции для ΔH . Пробле-
мы могут возникнуть при наличии грубых ошибок в каталогах ГНС, кото-
рые очень сложно выявляются. Отбраковать грубые ошибки каталогов 
можно при помощи условия (3.10): 

 

 ( )
2 2 2 2

PP
P HP GGM H

H H m m mγ
γ

ζ− < + + ,                    (3.10) 

 

где 
PHm  – оценка среднеквадратической погрешности определения геоде-

зической высоты пункта ГНС по паспортной точности спутникового при-
емника; 

 
PH

m γ  – предельно допустимая невязка геометрического нивелирова-

ния для данного пункта, определяемая по классу нивелирования; 
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 ( )GGMmζ  – эмпирически установленные значения ошибки вычисления 
аномалии высоты по модели геопотенциала для данного региона. 

По результатам проведенных исследований возможности преобразова-
ния смешанных аномалий силы тяжести в чистые можно сформулировать 
следующие выводы: 

− преобразование АСТ из смешанных в чистые по архивным каталогам 
осуществимо без потери точности вплоть до масштаба 1:25 000; 

− преобразование аномалий силы тяжести по каталогам крупномас-
штабных гравиметрических карт возможно с увеличением СКО в 2–4 раза; 

− требуется провести оценку точности интерполирования комбинации 
систематических ошибок определения аномалий высот по моделям геопо-
тенциала и нивелирных сетей, определить оптимальный алгоритм созда-
ния матриц деформаций нивелирных сетей; 

− необходимо предусмотреть в базе данных гравиметрической инфор-
мации атрибут типа используемой высоты в целях автоматического пре-
образования смешанных АСТ в чистые и обратно; 

− требуется предусмотреть тип данных, соответствующий спутнико-
вым определениям аномалии высоты по разнице нормальных высот из ка-
талогов государственной нивелирной сети и ГНСС-определений, для это-
го необходимо связать базы данных гравиметрической информации с ба-
зой данных государственной нивелирной сети; 

− необходимо указывать в атрибутах типа данных координат из ГНСС-
определений на пунктах ГНС дату измерений и использующуюся систему 
координат. 

3.1.5. Исследование изменений аномалии силы тяжести  
с изменением высоты  

во внешнем гравитационном поле Земли 

3.1.5.1. Общие замечания по поводу решения задач физической 
геодезии при помощи применения аналитически  

продолженных аномалий 

Из теории гравитационного потенциала [30] известно, что если грави-
тационный потенциал и его производные обладают гармоническими свой-
ствами и заданы в некоторой области, расположенной вне притягивающих 
масс, то они могут быть определены во всем пространстве, в том числе  
и внутри притягивающих масс, за исключением особых точек, в которых 
потенциал и его производные теряют свои гармонические свойства. Про-
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цесс определения гармонической функции в области ее существования по 
значениям, заданным в другой более узкой области, называется аналити-
ческим продолжением [31, 32]. 

Методам аналитического продолжения геофизических полей с профи-
лей измерений в нижнее полупространство посвящено много работ веду-
щих геофизиков: И.Г. Клушина, В.Н. Страхова, М.С. Жданова. Однако,  
в процессе многочисленных исследований, было выявлено явление распа-
дения поля в окрестности особых точек [33], которое свидетельствует о 
катастрофической неустойчивости применяемых подходов, явившееся 
препятствием для практического применения метода. Причина этого со-
стоит в несоответствии описания изучаемых полей линейными математи-
ческими моделями: представление полей в виде рядов или интегралов ти-
па Коши порождает существенную некорректность, которая объясняется 
тем, что поле, имеющее особенности в нижнем полупространстве, прин-
ципиально не может адекватно описываться линейной конструкцией. 
Единственной относительно удачной попыткой обойти описанные слож-
ности является метод полного градиента В. М. Березкина [34]. Аналитиче-
ское продолжение аномалий силы тяжести в нижнее полупространство 
представляет собой сложную проблему. Принципиальная сложность за-
ключается в неустойчивости (некорректности) решения этой задачи. Су-
ществует много способов аналитического продолжения поля: решение 
граничной задачи для дифференциального уравнения Лапласа, методом 
собственных функций или методом сеток, на основе использования ряда 
Тейлора и др. [35]. Все указанные методы подвержены влиянию случай-
ных ошибок при выполнении практических расчетов. Среди различных 
способов аналитического продолжения гармонических функций вниз 
наиболее простым является способ, основанный на теореме Гаусса о сред-
нем значении гармонической функции [31]. 

Впервые в физической геодезии аналитическое продолжение вниз ис-
следовал М. С. Молоденский. Однако он отказался от этого метода. Дело  
в том, что аналитическое продолжение внешнего гравитационного потен-
циала внутрь земных масс может оказаться сингулярным в некоторых 
точках. Несмотря на это, интерес к аналитическому продолжению, благо-
даря своей простоте, проявляли и проявляет сейчас ряд западных специа-
листов в области физической геодезии. К ним относятся Бьерхаммар [36], 
который предложил решение краевой задачи физической геодезии выпол-
нять с помощью сферы целиком расположенной в теле Земли несмотря на 
то, что искомый возмущающий потенциал не гармоничен между сферой 
Бъерхаммара и поверхностью Земли. При этом он опирался на теорему 
Рунге-Крарупа, согласно которой, любая гармоническая функция ϕ , ре-
гулярная вне поверхности Земли, может быть равномерно аппроксимиро-
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вана гармоническими функциями ψ , регулярными вне произвольно за-
данной сферы внутри Земли, в том смысле, что для всякого заданного 

0ε >  неравенство ϕ−ψ < ε  справедливо как во внешнем пространстве, 
так и на любой замкнутой поверхности охватывающей Землю[37, 38–40]  
и др. M. Pick в работе [41] предложил для аналитического продолжения 
функций с поверхности Земли вверх использовать плотности простого  
и двойного слоя. Однако их выводы были выполнены формально и неза-
висимо от проблем сходимости при игнорировании того, что на самом де-
ле аналитическое продолжение внутрь масс Земли в общем случае недо-
пустимо. Аналитическое продолжение внешнего гравитационного потен-
циала c помощью регулярной гармонической функции вниз к уровню мо-
ря возможно, когда все массы вне эллипсоида исключены, причем так, что 
потенциал вне Земли должен остаться неизменным, В этом случае анали-
тическое продолжение возмущающего потенциала T  и его производных 
является регулярной функцией всюду между земной поверхностью и эл-
липсоидом [42]. Формально теорема Рунге-Крарупа допускает возмож-
ность аналитического продолжение внешнего потенциала вниз к уровню 
моря с точностью, достаточной для всех практических целей. Таким обра-
зом, эта теорема, утверждает, что любую гармоническую вне поверхности 
функцию можно равномерно приблизить с помощью последовательности 
функций гармонических вне произвольной сферы, или же с помощью ча-
стичных сумм рядов Фурье по системе сферических функций. М. С. Пет-
ровская [43] рассматривала вопрос об аналитическом продолжении геопо-
тенциала в верхнее и нижнее полупространство. 

Потребность в точном определении гравитационного поля Земли ста-
новится очевидной при решении современных задач геодезии, геофизики, 
геодинамики, океанографии и климатологии. Определения характеристик 
гравитационного поля получили новое развитие с появлением новых кос-
мических методов изучения поля силы тяжести при реализации трех кон-
цепций измерения – космических гравиметрических миссий: 

− система спутник-спутник (satellite-to-satellite tracking, SST), один 
из которых высокий, другой низкий, реализованная в проекте CHAMP 
(Challenging Minisatcllite Payload); 

− система спутник-спутник, в которой оба спутника низкие, реали-
зованная в проекте GRACE (Gravity Recovery and Climate Experiment);  

− спутниковая градиентометрия, реализуемая в проекте GOCE 
(Gravity Field and Steady State Ocean Circulation Explorer). При этом необ-
ходимо учитывать, что при изучении ГПЗ спутниковыми методами грави-
тационное поле на спутниковых высотах отличается от гравитационного 
поля тяжести на земной поверхности.  
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Во-первых, орбиты спутников подвержены влиянию силы тяготения, 
потенциал которой представляют в виде разложения в ряд Фурье по си-
стеме сферических функций  

  ( ) ( ) ( )
2 0

, , 1 cos sin sin ,
n n

e
nm nm nm

n m

afM
V r C m S m P

r r

∞

= =
ϕ λ = + λ + λ ϕ

  
  

   
∑ ∑   (3.11) 

 

где fM  – геоцентрическая гравитационная постоянная; 
 ea  – экваториальный радиус Земли; 
 r  – радиус-вектор точки наблюдения (ϕ ,λ , r ); 
 nmC и nmS  – нормированные безразмерные гармонические коэффици-

енты геопотенциала степени n  и порядка m ; 
( )sinnmP ϕ  – нормированные присоединенные функции Лежандра. 

Во-вторых, на движение особенно близких спутников оказывают влия-
ние сопротивление атмосферы, а также притяжение Луны и Солнца. 

В-третьих, потенциал тяготения ( ), ,V rϕ λ  является регулярной функ-
цией на бесконечности и при r →∞  имеем ( )lim 0, ,

r
V r

→∞
ϕ =λ . 

Задача, связанная с гармоническим продолжением гравиметрической ин-
формации к поверхности Земли, полученной во внешнем пространстве по 
спутниковым данным, постоянно встречается в физической геодезии. Следу-
ет иметь в виду, что характеристики аномального гравитационного поля, по-
лученные на спутниковой высоте, даже при отсутствии ошибок измерений, 
расцениваются по своей информативности как результат сглаживания назем-
ных данных по стандартным площадям. При этом необходимо учитывать, 
что при изучении ГПЗ спутниковыми методами преобразование результатов 
со спутниковых высот на земную поверхность приводит к увеличению неиз-
бежных погрешностей и ослаблению ГПЗ с высотой измерений пропорцио-

нально коэффициенту [42] ( )( )1nr
R

+
, где r  – радиус-вектор искусственного 

спутника земли (ИСЗ) на орбите; R  – радиус Земли; n  – степень разложения 
аномального гравитационного потенциала в ряд Фурье.  

Этот эффект минимизируется при использовании орбиты настолько 
низкой, насколько это возможно и измерением не самого потенциала V  
или даже его градиента, а его производных второго порядка, как изменений 
силы тяжести. 

Не менее актуальной является и задача гармонического продолжения 
вверх от земной поверхности во внешнее пространство для определения 
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силы тяжести и аномалий силы тяжести на высоте полета ИСЗ или само-
лета для калибровки результатов спутниковой гравиметрии и аэрограви-
метрии. Следует иметь в виду, что значения аномального гравитационного 
потенциала, полученные на спутниковой высоте, даже при отсутствии 
ошибок измерений, расцениваются по своей информативности как сгла-
женные на земной поверхности по стандартным площадям размером ∆×∆ . 
Так, например, аномалия силы тяжести, полученная на высоте ∼12 км, со-
ответствует сглаженным наземным аномалиям силы тяжести по трапеци-
ям размером 1 1×   [37]. То есть, аналитическим продолжением аномалий 
в верхнее полупространство подавляются высокочастотные составляющие 
гравитационного поля. Кроме того, неизбежные ошибки измерений на 
спутниковых высотах при продолжении вниз возрастают пропорциональ-
но коэффициенту (7) [42]. 

3.1.5.2. Теоретические основы применения гармонических  
функций для аналитического продолжения аномалий силы  

тяжести в исследовании их изменений с изменением высоты 

Аналитическое продолжение аномалий силы тяжести на высоту полета 
ИСЗ можно выполнить, если эта аномалия является гармонической функ-
цией и задана на сфере или плоскости. В этом случае задача аналитиче-
ского продолжения аномалий силы тяжести на высоту орбиты ИСЗ реша-
ется путем использования интеграла Пуассона, разрешающего классиче-
скую краевую задачу Дирихле для гармонических функций на сфере [39].  

Внешняя задача Дирихле для сферы ω  в общем случае заключается  
в определении вне этой сферы произвольной гармонической функции 

( ),eV ϕ λ , регулярной на бесконечности lim eV
ρ→∞

 по значениям ( ),f ′ ′ϕ λ , за-

данным на поверхности этой сферы ω , причем так, чтобы на поверхности 
этой сферы выполнялось условие  

 

 
( ) ( ) ,lim ,

R e fV
ρ→

′ ′ϕ λ = ϕ λ ,                                 (3.12) 

 

где ′ϕ  и ′λ  – значения сферических координат на поверхности сферы ω . 
Определяемую функцию ( ),eV ϕ λ  на основании фундаментальной 

формулы Грина  
 

 
( ) ( )2 2114  ,e

e
e

rdV dR d V R d
dn r x dn

V
d

π ωϕ λ −= ω∫∫ ∫∫ ,               (3.13) 
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можно представить как сумму потенциалов простого и двойного слоя, 
распределенных на поверхности сферы ω  

 

 
( ) ( ) 21

, νe
d r

V d R d
r dn
µ

ϕ λ = ω− ω∫∫ ∫∫ .                     (3.14) 
 

Так как каждый из этих потенциалов удовлетворяет уравнению Лапла-
са то ( )Δ , 0eV ϕ λ = . Плотность простого слоя µ  и плотность двойного 
слоя ν  определяются из предельного условия  

 

 
( ) ( )lim ,  , ,

R eV f
ρ→

′ ′ρ ϕ ϕλ = λ .                              (3.15) 

 

Учитывая, что потенциал простого слоя – функция непрерывная, а по-
тенциал двойного слоя терпит на слое разрывы при Rρ→   

 

( )0 2 ,  eW W= + π ′ν ′ϕ λ  и ( )0 2 ,iW W= − π ′ν ϕ ′λ , 
 

поэтому  
 

 
( ) ( ) ( ) ( )1

 lim ν 2 , ,  , ,
R

e
d r

d d f
r

V
dnρ→

µ
= ω− ω+ ′ ′ = ′ ′ρ ϕ πν ϕλ λ ϕ λ∫∫ ∫∫ ,    (3.16) 

 

или после преобразования получим 
 

 
( ) ( ) ( )21 lim 2 , ,    , ,

2e
R

R d f
R r

V
ρ→

ν = µ − ω ′ ′ ′ ′ρ ϕ + πν ϕ λ = ϕ λ 


λ


∫∫ .    (3.17) 

 

Выбирая произвольные плотности µ  и ν  так, чтобы подинтегральный 
член в скобках равнялся нулю, тогда 

 

( ) ( ) ( ) lim 2 ,   ,  , ,
R

e fV
ρ→

= π ′ ′ ′ ′ρ ϕ λ ν ϕ λ = ϕ λ . 

 

Отсюда находим  
 

( ) ( )1, ,  
2

fν ′ ′ ′ϕ = ϕ
π

′λ λ ; 
 

( ) ( )1, ,  
4

f
R

µ ϕ λ = ϕ′ ′ ′ ′λ
π

. 
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Подставляя найденные значения µ  и ν  в формулу (3.14), получим 
 

 

( ) ( )
( )1

2
21 1, , ,  

4e

d r
V f R d

rR dR

− 
 ρ ϕ λ = ϕ λ +′ ω
 

′
π

 
∫∫ .            (3.18) 

 
Выражение в квадратных скобках после преобразования можно пред-

ставить в следующем виде 
 

 

( )1 2 2

3

21 d r R
rR dR Rr

− 
ρ − + =

 
 

.                             (3.19) 

 
Тогда интеграл (3.18) примет вид  
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Формула (3.20) называется интегралом Пуассона для внешнего про-

странства. Этот интеграл решает внешнюю краевую задачу Дирихле для 
сферы при Rρ > . 

Используем интеграл Пуассона (3.14) для аналитического продолже-
ния аномального потенциала и его первой производной во внешнее полу-
пространство. Так как аномальный потенциал ( ), ,eT ρ ϕ λ  – является разно-

стью потенциалов действительной ( ), ,W ρ ϕ λ  и нормальной ( )U ,ϕ λ  Зем-

ли, т. е. ( ) ( ) ( ), , , , U ,eT Wρ ϕ λ = ρ ϕ λ − ϕ λ , то в нем отсутствует центробеж-
ный потенциал и он удовлетворяет уравнению Лапласа и регулярен на 
бесконечности. Представим этот потенциал вне сферы радиуса R  в виде 
ряда Фурье по шаровым функциям.  

Для этого в формуле (3.18) представим функцию 1 r  помощью ряда по 
степеням R ρ  в следующем виде 
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Дифференцируя ряд (3.21) по R умножая на 2, получим  
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Разделив ряд (3.21) на R, складывая его с рядом (3.18), представим яд-

ро интеграла Пуассона (3.18) в следующем виде 
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Подставляя выражение (3.23) в интеграл Пуассона (3.18), получим 
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Введем следующее сокращение для (3.24):  
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В выражении (3.25) вместо полинома Лежандра ( )cosnP ψ  степени n  
от сферического расстояния ψ  необходимо представить его через сфери-
ческие координаты ( ),′ ′ϕ λ  текущей точки на сфере с помощью теоремы 
сложения сферических функций 
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здесь ( )sinnmP ϕ  – присоединенная функция Лежандра. 
Подставляя выражение (3.26) в формулу (3.25), получим 
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В формуле (3.27) выражения в квадратных скобках определяют гармо-

нические коэффициенты соответствующих сферических функций, кото-
рые обозначены как 
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Подставляя принятые обозначения (3.28) в формулу (3.27), получим 
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Решение краевой задачи Дирихле для сферы радиуса R в виде ряда по 

сферическим функциям для возмущающего потенциала T: 
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и их производных (чистые аномалии силы тяжести) 
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В формулах (3.30) и (3.31) сферическая функция ( ),nY ϕ λ  степени n  име-
ет вид 
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где 0
nm nm nmC C C∆ = −  – разность безразмерных нормированных гармони-

ческих коэффициентов геопотенциала. При вычислении разности nmC∆  

значение 0
nmC  – коэффициент нормального геопотенциала отнесен к эл-

липсоиду WGS-84. nmC , nmS  – нормированные безразмерные гармониче-
ские коэффициенты модели геопотенциала степени n  и порядка m ; 

( )sinnmP ϕ  – нормированные присоединенные функции Лежандра. 

3.1.5.3 Исследование изменений аномалий силы тяжести  
с изменением высоты во внешнем гравитационном поле Земли 

На рис. 3.14 и 3.15 приведены карты чистых аномалий силы тяжести, 
вычисленных по формулам (3.31) и (3.32) при r R>  на уровне моря и на 
высоте 500 км c помощью программных продуктов [44–48]. 

Для вычисления сферической функции по формуле (3.32) использова-
ны нормированные гармонические коэффициенты nmC и nmS  глобальной 
высокостепенной модели геопотенциала EIGEN-6C4 [49] при 2190n = .  

На рис. 3.14 приведена карта чистых аномалий силы тяжести на по-
верхности Земли, вычисленных на уровне моря (при r R= ). 

Из рис. 3.14 видно, что значения чистых аномалий, вычисленных на 
уровне моря находятся в диапазоне от –300 мГал до +300 мГал. 

 

 
Рис. 3.14. Чистые аномалии силы тяжести, вычисленные  

на поверхности Земли на уровне моря 
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Рис. 3.15. Чистые аномалии силы тяжести, вычисленные  
на высоте 500 км над Землей 

 
 
На рис. 3.15 приведена карта чистых аномалий силы тяжести, вычис-

ленных на высоте 500 км над Землей ( 500 кмr R= + ). 
Приведенные на рис. 3.15 значения чистых аномалий силы тяжести, 

вычисленные на высоте 500 км над земной поверхностью, находятся  
в диапазоне от –50 мГал до +35 мГал. Причем, с увеличением высоты до 
500 км, эти аномалии уменьшились по сравнению с чистыми аномалиями 
силы тяжести, вычисленными на уровне моря, почти в 6–7раз. 

На рис. 3.16 приведен график изменения с высотой силы тяжести g , 
нормальной силы тяжести γ  и чистых аномалий g∆ .  
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Рис. 3.16. График изменения с высотой силы тяжести g ,  
нормальной силы тяжести и чистых аномалий 

  
 
Из приведенного на рис. 3.16 графика видно, что изменения с высотой 

происходит почти линейно, уравнения которых имеют следующий вид: 
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где H  – высота в километрах. 
Это изменение с ростом высоты от 0 до 500 км составило от 9,8 м/с2 до 

8,4 м/с2. Поведение чистой аномалии силы тяжести с ростом высоты 
представляет сложную кривую, уравнение которой имеет следующий вид: 

 

( ) 2 5 3

8 4 11 5

14 6

91,0127 0,2692 0,0018 1,0046 10

3,0341 10 4,6039 10

2,7491 10 .

g H H H H
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Рис. 3.17. График изменения вертикального градиента силы тяжести с высотой 
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На рис. 3.17 приведен график изменения вертикального градиента силы 
тяжести с высотой. 

Вертикальные градиенты нормального и реального гравитационного 
поля Земли изменяются с высотой практически одинаково, однако раз-
ность между ними изменяется по сложной кривой от 45 10−+ ⋅  до  

41 10−− ⋅  мГал/м2. 
Таким образом, результаты гармонического продолжения аномалий 

силы тяжести во внешнее пространство показывают, что при удалении от 
земной поверхности характеристики аномального гравитационного поля 
убывают по величине, а изображения на картах как бы размазываются, 
потому что аномалии силы тяжести, обусловленные неглубоко залегаю-
щими, сконцентрированными массами убывают сильнее, чем аномалии 
более глубоко залегающих источников. Иначе говоря, в процессе анали-
тического продолжения в верхнее полупространство подчеркивается вли-
яние региональных аномалий и ослабление влияния локальных. 
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3.2. Анализ данных чистых и смешанных аномалий силы  
тяжести, полученных по результатам работы космических  

гравиметрических миссий CHAMP, GRACE, GRACE-FO и GOCE 

3.2.1. Введение 

Появление современных спутниковых технологий изменило подходы  
в решении задач изучения гравитационного поля Земли (ГПЗ) как в про-
странстве, так и во времени. В настоящее время получение характеристик 
(ГПЗ) возможно не только по наземным измерениям, но и методами моде-
лирования по данным космических гравиметрических миссий Challenging 
Minisatellite Payload (CHAMP), Gravity Field and Steady-State Ocean 
Circulation Explorer (GOCE), Gravity Recovery and Climate Experiment 
(CRACE) и ее продолжения – CRACE Follow On [1–10]. 

Миссии CHAMP, GRACE, GRACE-FO и GOCE имеют различные ха-
рактеристики, различаются между собой как по составу исходной инфор-
мации, так и по методикам их обработки и удовлетворяют разным аспек-
там определения высокоточного гравитационного поля. 
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В связи с этим актуальным является анализ получения чистых и сме-
шанных аномалий силы тяжести по результатам работы космических гра-
виметрических миссий CHAMP, GRAСE, GRAСE-FO и GOCE.  

В космических гравиметрических миссиях CHAMP, GRACE, GRACE-
FO и GOCE реализуются две технологии наблюдений [11, 12]: 

− «спутник – спутник» (измерения расстояний и скорости изменения 
расстояний между спутниками);  

− спутниковая градиентометрия (измерение разности ускорений силы 
тяжести внутри спутника).  

Концепция «спутник – спутник» состоит в измерении скорости между 
двумя спутниками при двух вариантах их взаимного расположения: высо-
кий и низкий спутник и два низких спутника, расположенных на близких 
орбитах на расстоянии 50−300 км.  

В проекте CHAMP реализована система «спутник – спутник», один из 
которых высокий, другой низкий.  

В системе «спутник–спутник» в режиме высокий – низкий околозем-
ная орбита низколетящего спутника непрерывно отслеживается высокими 
спутниками относительно сети наземных станций. На низком спутнике 
устанавливают акселерометр. Акселерометр измеряет трехмерные возму-
щающие ускорения, которые вызваны гравитационным полем Земли  
и действуют на низкий спутник. Возмущающие ускорения соответствуют 
первым производным гравитационного потенциала.  

Одной из основных целей миссии CHAMP предусматривалось изучение 
глобального поля силы тяжести, уточнение длинноволновой части статиче-
ского поля и ее временных вариаций, вызванных различными геодинамиче-
скими факторами. В результате работы миссии создано несколько моделей 
геопотенциала по разному набору измерительных данных, определена уро-
венная поверхность Земли с точностью 10 см и пространственным разре-
шением 350 км (55 гармоник геопотенциала), более высокая – сантиметро-
вая точность геоида получена с разрешением 1 000 км [11]. 

Система «спутник – спутник» SST-LL, в которой оба спутника низкие, 
реализована в проекте GRACE. GRACE – совместная гравиметрическая 
миссия Федерального агентства National Aeronautics and Space 
Administration (NASA) и Германского центра авиации и космонавтики. 

Миссия реализована системой «спутник–спутник», в режиме «низкий–
низкий», согласно которому два спутника следуют друг за другом по око-
лополярной орбите на высоте до 500 км. При этом выполняются измере-
ния межспутниковой дальности и ее производных с использованием мик-
роволновой системы слежения. Орбиты двух отдельно летящих спутников 
по-разному возмущаются в гравитационном поле Земли, что приводит к 
вариациям межспутниковой дальности.  

https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D1%80%D0%BC%D0%B0%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%86%D0%B5%D0%BD%D1%82%D1%80_%D0%B0%D0%B2%D0%B8%D0%B0%D1%86%D0%B8%D0%B8_%D0%B8_%D0%BA%D0%BE%D1%81%D0%BC%D0%BE%D0%BD%D0%B0%D0%B2%D1%82%D0%B8%D0%BA%D0%B8
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При полете над территориями со структурными и плотностными неод-
нородностями распределения масс, скорость спутников меняется, а вместе 
с тем меняется расстояние между ними. В среднем расстояние составляет 
220–250 км, измеряется с помощью микроволнового радара с точностью 
до первых десятков микрон. Изменение, отражающееся в силе притяжения 
спутников, может быть измерено с высокой тонностью (до одного микро-
на). Измеренное с высокой точностью расстояние является исходной ве-
личиной, позволяющей выявить распределение аномальных масс террито-
рий земной поверхности, над которыми пролетают гравиметрические 
спутники [13, 14]. 

Траектория полета спутников покрывает территорию Земли примерно 
за 30 суток, что позволяет отслеживать перераспределение масс на земной 
поверхности в динамике. Это дает возможность создавать временные мо-
дели гравитационного поля с периодичностью один раз в месяц.  

Помимо микроволновой системы измерений расстояния, каждый спут-
ник оснащен дополнительным оборудованием. ГНСС-приемник, распо-
ложенный на борту спутников, позволяет определять точное положение 
каждого космического аппарата вдоль базовой линии. Для устранения 
влияния внешних негравитационных сил на борту каждого космического 
аппарата находится чувствительный электростатический акселерометр, 
расположенный вблизи центра масс спутника [15]. 

Основными целями проекта являются: 
− определение глобального гравитационного поля Земли с высокой 

разрешающей способностью; 
− изучение вариации силы тяжести во времени; 
− изучение с помощью GPS-измерений явлений преломления в ионо-

сфере и тропосфере путем детального определения электронного содер-
жания. 

Миссия GRACE, запущенная с космодрома Плесецк в 2002 году, пре-
кратила функционирование в сентябре 2017 г., в мае 2018 г. запущена 
миссия CRACE Follow On (GRACE FO). Спутники миссии оснастили ла-
зерной интерферометрической системой, согласованной с данными ос-
новной измерительной системы микроволнового диапазона спутников 
GRACE. Это позволило повысить точность измерения расстояния между 
спутниками почти в 30 раз, а точность гравитационных моделей увели-
чить на 30 %. 

Результатами завершившейся миссии CRACE и активной CRACE FО 
являются ежемесячные данные, представленные временными моделями 
геопотенциала, позволяющие отследить изменение характеристик грави-
тационного поля Земли в динамике, сделать выводы о сезонных перерас-
пределениях масс на суше и в океане. Кроме того, результаты работы мис-
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сии существенно расширяют возможности исследований вопросов клима-
тологии, сейсмологии и геодинамики [5, 8, 14, 16–18].  

Миссия GOCE – совместный проект многолетней работы исследовате-
лей и инженеров из 45 европейских компаний (Европейское космическое 
агентство) – предназначен для исследования гравитационного поля Земли. 
Для этого на спутнике установлен градиометр, который будет измерять 
гравитационное поле с высочайшей точностью. В основе градиентометрии 
спутника лежит принцип дифференциальной акселерометрии. Точность 
измерений обеспечивают шесть необычайно чувствительных акселеро-
метров, способных почувствовать отклонение в силе притяжения в одну 
десятитриллионную от нормального уровня [1]. Принципиально важной 
составляющей проекта стала непрерывная (каждые 10 секунд) высокоточ-
ная привязка спутников миссии GOCE к созвездию спутниковой навига-
ционной системы GPS, одновременно решающая две задачи: 

− обеспечение высокоточной пространственной привязкой каждого 
градиентометрического измерения; 

− получение прямоугольных координат спутника GOCE как псевдоиз-
мерения, которые обладают высокой информативностью с точки зрения 
оценивания низкочастотной компоненты модели гравитационного потен-
циала Земли. 

В табл. 3.5 представлена сравнительная характеристика спутников 
космических гравиметрических миссий CHAMP, GRACE, GRACE-FO, 
GOCE 

 
Таблица 3.5 

Основные характеристики спутников космических  
гравиметрических миссий CHAMP, GRACE, GRACE-FO, GOCE 

 
Высота  

орбиты, км 
Эксцентриситет Наклон Дата запуска Масса, кг 

CHAMP 450–350 0,000 7 87,3˚ 15.07.2000 400 
GRACE 450–300 0,005 89,5 ˚ 17.03.2002 432 
GRACE-

FO 
490–300 0,001 89,0 ˚ 22.05.2018 600 

GOCE 250 0,004 5 96,6 ˚ 17.03.2009 1 100 
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3.2.2. Анализ получения чистых и смешанных аномалий силы 
тяжести, полученных по результатам работы космических 

гравиметрических миссий CHAMP, GRAСE, GOCE 

В настоящее время модели глобального гравитационного поля, полу-
ченные на основе спутниковых измерений гравиметрических миссий 
CHAMP, GRACE, GRACE-FO и GOCE становятся все более детальными  
и точными с высоким разрешением как для статических, так и для вре-
менных характеристик гравитационного поля Земли. На сегодняшний 
день на сайте службы International Center for Global Gravity Field Models 
(ICGEM) представлено 178 моделей, доступных в виде нормированных 
коэффициентов сферических гармоник [19].  

В табл. 3.6 представлен перечень глобальных моделей геопотенциала, 
созданных по результатам космической гравиметрической миссии 
CHAMP. 

 
Таблица 3.6 

Перечень глобальных моделей геопотенциала, полученных по результатам  
космической гравиметрической миссии CHAMP [19] 

Nn 
Наименование 

модели 
Год  

публикации 
Максимальная 

степень 
Исходные 

данные 
1 ULux_CHAMP2013s 2013 120 S(Champ) 
2 AIUB-CHAMP03S 2010 100 S(Champ) 
3 EIGEN-CHAMP05S 2010 150 S(Champ) 
4 AIUB-CHAMP01S 2007 70 S(Champ) 
5 EIGEN-CHAMP03S 2004 140 S(Champ) 
6 TUM-2S 2004 60 S(Champ) 
7 DEOS_CHAMP-01C 2004 70 S(Champ) 
8 ITG_Champ01K 2003 70 S(Champ) 
9 ITG_Champ01S 2003 70 S(Champ) 

10 ITG_Champ01E 2003 75 S(Champ) 
11 TUM-2Sp 2003 60 S(Champ) 
12 TUM-1S 2003 60 S(Champ) 
13 EIGEN-CHAMP03Sp 2003 140 S(Champ) 
14 EIGEN-2  2003 140 S(Champ) 

15 EIGEN-1  2002 119 S(Champ) 

Примечание: S – спутниковые данные 

http://www.aiub.unibe.ch/content/research/satellite_geodesy/gnss___research/global_gravity_field_determination_champ/index_eng.html
http://www.gfz-potsdam.de/champ/results/index_RESULTS.html
http://www.igg.uni-bonn.de/apmg/index.php?id=gravitationsfeldmodelle
http://www.igg.uni-bonn.de/apmg/index.php?id=gravitationsfeldmodelle
http://www.gfz-potsdam.de/champ/results/index_RESULTS.html
http://www.gfz-potsdam.de/champ/results/index_RESULTS.html
http://www.gfz-potsdam.de/champ/results/index_RESULTS.html
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В табл. 3.7 представлен перечень глобальных моделей геопотенциала, 
созданных по результатам космической гравиметрической миссии 
GRACE. 

Таблица 3.7 
Перечень глобальных моделей геопотенциала, полученных  

по результатам космической гравиметрической миссии GRACE [19] 

Nn Наименование  
модели 

Год  
публикации 

Максимальная 
степень 

Исходные  
данные 

1 ITSG-Grace2018s 2019 200 S(Grace) 
2 Tongji-Grace02k 2018 180 S(Grace) 
3 Tongji-Grace02s 2017 180 S(Grace) 
4 ITU_GRACE16 2016 180 S(Grace) 
5 HUST-Grace2016s 2016 160 S(Grace) 
6 GGM05S 2014 180 S(Grace) 
7 ITSG-Grace2014k 2014 200 S(Grace) 
8 ITSG-Grace2014s 2014 200 S(Grace) 
9 Tongji-GRACE01 2013 160 S(Grace) 

10 AIUB-GRACE03S 2011 160 S(Grace) 
11 GIF48 2011 360 A, G, S(Grace) 
12 ITG-Grace2010s 2010 180 S(Grace) 
13 GGM03C 2009 360 A, G, S(Grace) 
14 AIUB-GRACE02S 2009 150 S(Grace) 
15 EGM2008 2008 2190 A, G, S(Grace) 
16 AIUB-GRACE01S 2008 120 S(Grace) 
17 GGM03S 2008 180 S(Grace) 
18 ITG-Grace03 2007 180 S(Grace) 
19 ITG-Grace02s 2006 170 S(Grace) 
20 EIGEN-GRACE02S 2004 150 S(Grace) 
21 GGM02S 2004 160 S(Grace) 
22 EIGEN-GRACE01S 2003 140 S(Grace) 
23 GGM01S 2003 120 S(Grace) 

Примечание: A – альтиметрия, G – наземные данные, S – спутниковые  
данные 
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В табл. 3.8 представлен перечень глобальных моделей геопотенциала, 
созданных по результатам космической гравиметрической миссии GOCE. 

 
Таблица 3.8 

Перечень глобальных моделей геопотенциала, полученных  
по результатам космической гравиметрической миссии GOCE [19] 

Nn Наименование модели Год пуб-
ликации 

Максималь-
ная степень 

Исходные  
данные 

1 GOSG02S 2023 300 S (Goce) 
2 GO_CONS_GCF_2_DIR_R6 2019 300 S(Goce) 
3 GO_CONS_GCF_2_TIM_R6 2019 300 S(Goce) 

4 EIGEN-GRGS.RL04.MEAN-
FIELD 2019 300 S(Goce) 

5 GO_CONS_GCF_2_TIM_R6e 2019 300 G (Polar), S(Goce) 
6 GOSG01S 2018 220 S(Goce) 
7 NULP-02s 2017 250 S(Goce) 
8 XGM2016 2017 719 A, G, S(GOCO05s) 
9 GO_CONS_GCF_2_SPW_R5 2017 330 S(Goce) 
10 IfE_GOCE05s 2017 250 S(Goce) 
11 IGGT_R1 2017 240 S(Goce) 
12 GOCO05c 2016 720 (Goce), A, G, S 
13 GOCO05s 2015 280 (Goce), S 
14 JYY_GOCE04S 2014 230 S(Goce) 
15 GO_CONS_GCF_2_TIM_R5 2014 280 S(Goce) 
16 GO_CONS_GCF_2_SPW_R4 2014 280 S(Goce) 
17 GO_CONS_GCF_2_TIM_R4 2013 250 S(Goce) 
18 ITG-Goce02 2013 240 S(Goce) 
19 JYY_GOCE02S 2013 230 S(Goce) 
20 GO_CONS_GCF_2_SPW_R2 2011 240 S(Goce) 
21 GO_CONS_GCF_2_TIM_R2 2011 250 S(Goce) 
22 GO_CONS_GCF_2_DIR_R2 2011 240 S(Goce) 
23 GO_CONS_GCF_2_TIM_R3 2011 250 S(Goce) 
24 GO_CONS_GCF_2_SPW_R1 2010 210 S(Goce) 
25 GO_CONS_GCF_2_TIM_R1 2010 224 S(Goce) 
26 GO_CONS_GCF_2_DIR_R1 2010 240 S(Goce) 
Примечание: A – альтиметрия, G – наземные данные, S – спутниковые данные 

 
Модели геопотенциала, полученные исключительно на основе спутни-

ковых наблюдений, представляют особый интерес. В отличие от наземных 
наблюдений, которые, как правило, немногочисленны и получены различ-
ными инструментальными средствами с разным уровнем качества и вы-
борками, спутниковые наблюдения охватывают всю поверхность Земли. 
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Поскольку спутниковые измерения производятся с помощью одной и той 
же сенсорной платформы, глобальный уровень точности наблюдений бо-
лее стабилен по сравнению с наземными наблюдениями. Это упрощает 
адекватное стохастическое моделирование на уровне наблюдений. 

Начиная с 2004 года, разработчики для создания глобальных моделей 
геопотенциала используют различные комбинации данных: результаты 
космических гравиметрических миссий CHAMP, GRACE и GOCE, назем-
ные измерения, альтиметрию, лазерную локацию (табл. 3.9).  

 
Таблица 3.9 

Перечень глобальных моделей геопотенциала, полученных  
по результатам различных комбинаций [19] 

Nn Наименование модели Год публи-
кации 

Максимальная 
степень Исходные данные 

1 GOCO2025s 2025 300 S(Goce), S(Grace), S(Lageos), 
S(Champ) 

2 WHU-SWPU-GOGR2022S 2023 300 S (Goce),  
S (Grace) 

3 Tongji-GMMG2021S 2022 300 S (Goce),  
S (Grace) 

4 SGG-UGM-2 2020 2190 A, EGM2008, S(Goce), 
S(Grace) 

5 GOCO06s 2019 300 S(Goce), S(Grace), S(Lageos), 
S(Champ) 

6 XGM2019e_2159 2019 2190 A, G, S(GOCO06s), T 
7 XGM2019e_2160 2019 5540 A, G, S(GOCO06s), T 
8 XGM2019e_2161 2019 760 A, G, S(GOCO06s), T 
9 SGG-UGM-1 2018 2159 EGM2008, S(Goce) 

10 IGGT_R1C 2018 240 G, S(Goce), S(Grace) 
11 EIGEN-6S4 (v2) 2016 300 S(Goce), S(Grace), S(Lageos) 
12 ITU_GGC16 2016 280 S(Goce), S(Grace) 
13 GGM05G 2015 240 S(Goce), S(Grace) 
14 GECO 2015 2190 EGM2008, S(Goce) 
15 GGM05C 2015 360 A, G, S(Goce), S(Grace) 

16 EIGEN-6C3stat 2014 1949 A, G, S(Goce), S(Grace), 
S(Lageos) 

17 EIGEN-6S2 2014 260 S(Goce), S(Grace), S(Lageos) 
18 GOGRA04S 2014 230 S(Goce), S(Grace) 
19 GO_CONS_GCF_2_DIR_R5 2014 300 S(Goce), S(Grace), S(Lageos) 

20 EIGEN-6C4 2014 2190 A, G, S(Goce), S(Grace), 
S(Lageos) 

21 GO_CONS_GCF_2_DIR_R4 2013 260 S(Goce), S(Grace), S(Lageos) 
22 GOGRA02S 2013 230 S(Goce), S(Grace) 
23 GOCO03s 2012 250 S(Goce), S(Grace) 
24 DGM-1S 2012 250 S(Goce), S(Grace) 
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Окончание табл. 3.9 

25 EIGEN-6C2 2012 1949 A, G, S(Goce), S(Grace), 
S(Lageos) 

26 GAO2012 2012 360 A, G, S(Goce), S(Grace) 
27 GOCO02s 2011 250 S(Goce), S(Grace) 
28 EIGEN-6S 2011 240 S(Goce), S(Grace), S(Lageos) 

29 EIGEN-6C 2011 1420 A, G, S(Goce), S(Grace), 
S(Lageos) 

30 GO_CONS_GCF_2_DIR_R3 2011 240 S(Goce), S(Grace), S(Lageos) 
31 EIGEN-51C 2010 359 A, G, S(Champ), S(Grace) 
32 GOCO01S 2010 224 S(Champ), S(Grace) 
33 EIGEN-5C 2008 360 A, G, S(Grace), S(Lageos) 
34 EIGEN-5S 2008 150 S(Grace), S(Lageos) 
35 EIGEN-GL04C 2006 360 A, G, S(Grace), S(Lageos) 
36 EIGEN-GL04S1 2006 150 S(Grace), S(Lageos) 
37 eigen-cg03c 2005 360 A, G, S(Champ), S(Grace) 
38 EIGEN-CG01C 2004 360 A, G, S(Champ), S(Grace) 
39 GGM02C 2004 200 A, G, S(Grace) 
Примечание: A – альтиметрия, G – наземные данные, S – спутниковые  
данные 

 
В монографии представлены результаты вычисления чистых и сме-

шанных аномалий силы тяжести по данным последних глобальных моде-
лей геопотенциала: GOCO2025s и XGM2019e_2159. 

GOCO2025s – спутниковая глобальная модель гравитационного поля 
содержит сферические гармоники до 300-й степени, с вековыми и годо-
выми вариациями до 200-й степени, разрешением до градуса. Модель 
GOCO2025s – новейший релиз в серии Gravity Observation Combination 
(GOCO) – инициативе, направленной на создание высокоточных и высо-
коразрешающих статических моделей глобального гравитационного поля 
[20]. Модель основана на спутниковых данных, собранных в период с 
2002 по 2024 год включительно. В разработке участвуют данные спутни-
ковых миссий GOCE (градиентометрические наблюдения TIM6), GRACE 
и GRACE-FO (наблюдения KBR и LRI), а также данные CHAMP, GOCE, 
Swarm A/B/C, Sentinel-1A/1B/2A/2B/3A/3B/6A, TerraSAR-X, TanDEM-X  
и спутниковые лазерные дальномерные наблюдения (система отсчета 
ITRF2020) для AJISAI, BLITS, LAGEOS-1, LAGEOS-2, LARES, LARES-2, 
LARETS, Starlette и Stella. Временные вариации включают наблюдения до 
степени и порядка 150 и регуляризируются до степени и порядка 200 с ис-
пользованием изотропного шума, разделенного масками суша/океан. Объ-
единение отдельных источников данных основано на полной системе 
нормальных уравнений с относительным весом компонентов, определяе-
мых с помощью оценки компонентов дисперсии. 

Исходная информация, положенная в основу спутниковой модели 
GOCO2025s, приведена на рис. 3.18. 
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Рис. 3.18. Cхема комбинации различных типов данных при создании 
модели GOCO2025s: 2, 150, 200, 300 – максимальные степени  
учитываемых гармонических коэффициентов геопотенциала 

 
 
Комбинированная ультравысокостепенная глобальная модель геопо-

тенциала XGM2019e_2159 опубликована в 2019 г. в трех вариантах, гар-
монические коэффициенты которой предварительно определены в обла-
сти сфероидальных гармоник, а затем, для соответствия стандарту 
ICGEM, преобразованы в сферические гармоники. На сайте ICGEM [21] 
варианты модели доступны до сферической гармоники степени N = 5 540 
(XGM2019e), до N = 2 190 (XGM2019e_2159) и до N = 760 (XGM2019). 
Основная информация по трем вариантам модели геопотенциала 
XGM2019e_2159 представлена в табл. 3.10.  
 

Таблица 3.10 
Основная информация по трем вариантам  
модели геопотенциала XGM2019e_2159 

№ Модель 
Год  

выхода 
Степень N 

Описание исходных 
данных 

1 XGM2019e 2019 5 540 A, G, S(GOCO06s), T 
2 XGM2019e_2159 2019 2 190 A, G, S(GOCO06s), T 
3 XGM2019 2019 760 A, G, S(GOCO06s) 

Примечание: A – альтиметрия, G – наземные данные, S – спутниковые данные, 
T – топография 
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Модель геопотенциала XGM2019e содержит сферические гармоники 
включительно до степени 5 540, что соответствует пространственному 
разрешению 2′ (~4 км). В этой модели длинноволновая часть до степени  
N = 300 представлена набором гармонических коэффициентов геопотен-
циала спутниковой модели GOCO06s [8]. Для определения коротких волн 
использована гравиметрическая и альтиметрическая информация, а также 
топографические данные.  

Спутниковая модель глобального гравитационного поля GOCO06s со-
держит сферические гармоники до 300-й степени, с вековыми и годовыми 
вариациями до 120-й степени. Эта модель получена по данным спутнико-
вых гравитационных миссий GOCE (данные градиентометра – TIM6), 
GRACE (модель ITSG-Grace2018s), CHAMP и наблюдений лазерной лока-
ции спутников SLR (Satellite Laser Ranging) [22]. Наземные данные состо-
ят из аномалий силы тяжести на суши и океане, предоставленных National 
Geospatial-Intelligence Agency (NGA), которые идентичны данным модели 
XGM2016 с разрешением 15'. Для повышения разрешающей способности 
модель дополнена гравиметрическим эффектом от топографических масс 
Земли по данным цифровой модели EARTH2014 [23]. Над океанами гра-
витационные аномалии получены с помощью спутниковой альтиметрии – 
DTU13, в соответствии с данными NGA. Вычисление гармонических ко-
эффициентов геопотенциала путем комбинации спутниковых и гравимет-
рических данных с альтиметрическими выполнялось с использованием 
полных нормальных уравнений до степени 760, что соответствует про-
странственному разрешению 15'. Для спектрального диапазона выше  
760-й степени применялось блочно-диагональное решение методом 
наименьших квадратов [17]. 

Исследования точности модели XGM2019e для различных территорий 
– Германия, США, Япония, Австралия, Бразилия, Мексика – по сравне-
нию с предыдущими моделями XGM2016, EIGEN6c4 и EGM2008 показа-
ли [10]: 

– на океане эта модель демонстрирует по всему спектру характеристи-
ки лучше, чем у предшествующих моделей; 

– в спектральном диапазоне до степени 760 имеется улучшенное при-
ближение к независимым данным GPS-нивелирования на суше по сравне-
нию с предыдущими моделями; 

– в спектральном диапазоне выше 760 точность модели XGM2019e 
ухудшается из-за отсутствия гравиметрических измерений с разрешением 
более 15'.  

На рис. 3.19 приведена исходная информация, положенная в основу 
спутниковой модели XGM2019e_2159. 
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Рис. 3.19. Cхема комбинации различных типов данных при  
создании модели XGM2019e_2159: 2, 300, 719, 2190 – максимальные  
степени учитываемых гармонических коэффициентов геопотенциала 
 
 
Анализ чистых и смешанных аномалий силы тяжести, полученных по ре-

зультатам работы космических гравиметрических миссий CHAMP, GRAСE, 
GOCE представлен для территории Новосибирской области. 

Для вычисления аномалий силы тяжести по данным глобальных моде-
лей геопотенциала требуется знание геоцентрических радиусов-векторов 
точек на высотах рельефа. Для этого выполнено моделирование геодези-
ческих высот для исходных гравиметрических пунктов по формуле  

 

 ГН Н= +ζ ,                                        (3.34) 
 

где ГН  – геодезическая высота;  

Н  – нормальная высота;  
ζ  – высота квазигеоида. 
Высоты квазигеоида для каждой точки на поверхности Земли P вычисля-

лись по данным глобальных моделей геопотенциала XGM2019e_2159, 
GOCO2025s по формуле  
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где Pr  – соответственно геоцентрический вектор точки P ;  

ea  – большая полуось Земли;  
ϕ  и λ  – широта и долгота, сферические координаты точки P;  

0N  – максимальная степень разложения модели геопотенциала, для 
XGM2019e_2159 – 2190, для GOCO2025s – 300;  

( )sinnmP ϕ  – полностью нормированные присоединенные полиномы 
Лежандра;  

0
nm nm nmC C C∆ = − ;  

nmC  и nmS  – нормированные горманические коэффициенты геопотен-
циала Земли;  

n  и m  – соответственоно степень и порядок коэффициента;  
0
nmC  – нормированные горманические коэффициенты поля [1]. 

Вычисление чистых и смешанных аномалий силы тяжести по данным 
глобальных моделей геопотенциала выполнено по формулам:  
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где Ч
Pg∆  и С

Pg∆  – соответственно чистые и смешанные аномалии силы 
тяжести;  

Pγ  – нормальное значение силы тяжести в точке P ; 
Вычисление аномалий силы тяжести по данным глобальных моделей 

геопотенциала выполнено с использованием программы SINTEGRAV v1.0, 
созданной в лаболатории физической геодезии СГУГиТ [24]. В программе 
осуществлены алгоритмы вычисления высоты квазигеоида (3.35) и анома-
лий силы тяжести по гармоническим коэффициентам геопотенциала (3.36). 

В результате вычислений получены цифровые модели смешанных 
аномалий силы тяжести на исследуемую территорию по данным моделей 
геопотенциала XGM2019e_2159 и GOCO2025s (рис. 3.20 и 3.21). 
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Рис. 3.20. Картосхема результатов определения смешанных аномалий 

силы тяжести по модели геопотенциала XGM2019e_2159  
на территорию Новосибирской области 

 

 
Рис. 3.21. Картосхема результатов определения смешанных аномалий  

силы тяжести по модели геопотенциала GOCO2025s  
на территорию Новосибирской области 
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В табл. 3.11 представлены разности значений между смешанными 
аномалиями силы тяжести, вычисленными по современным глобальным 
моделям геопотенциала, и наземными данными, приведенными в п.3.1.2. 
В таблице 3.11 даны максимальные разности maxX , минимальные разно-
сти minX , диапазон разностей R , среднее значение разности µ , средне-
квадратические погрешности (СКПσ ). 

 
Таблица 3.11 

Разности значений между смешанными аномалиями силы тяжести,  
вычисленными по современным глобальным моделям геопотенциала,  

и наземными данными 

Модели 

геопотенциала 
maxX  

(мГал) 

minX  

(мГал) 
R  (мГал) µ  (мГал) 

СКПσ  

(мГал) 

XGM2019e_2159  12,30 –21,70 34,00 –4,30 5,20 

GOCO2025s 37,02 –27,72 64,73 4,38 9,75 

 
Результаты, представленные в табл. 3.11, позволяют сделать вывод, что 

ультравысокостепенная модель XGM2019e_2159 является более точной 
моделью, демонстрируя СКП, равную 5,20 мГал. Спутниковая модель 
GOCO2025s показала СКП, равную 9,75 мГал. 

Картосхемы разностей представлены на рис. 3.22 и 3.23. 
По формуле 3.32 получены цифровые модели чистых аномалий силы 

тяжести на исследуемую территорию по данным моделей геопотенциала 
XGM2019e_2159 и GOCO2025s (рис. 3.24 и 3.25). 
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Рис. 3.22. Картосхема разностей наземных значений и результатов 

определения смешанных аномалий силы тяжести по модели 
геопотенциала XGM2019e_2159 на территорию Новосибирской области 

 

 
Рис. 3.23. Картосхема разностей наземных значений и результатов 

определения смешанных аномалий силы тяжести по модели 
геопотенциала GOCO2025s на территорию Новосибирской области 
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Рис. 3.24. Картосхема результатов определения чистых аномалий силы 

тяжести по модели геопотенциала XGM2019e_2159 на территорию 
Новосибирской области 

 

 
Рис. 3.25. Картосхема результатов определения яичтых аномалий силы 

тяжести по модели геопотенциала GOCO2025s на территорию 
Новосибирской области 
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В таблице 3.12 представлены разности значений между чистыми ано-
малиями силы тяжести, вычисленными по современным глобальным мо-
делям геопотенциала, и наземными данными, приведенными в п.3.1.2.  
В табл. 3.12 даны максимальные разности maxX , минимальные разности 

minX , диапазон разностей R , среднее значение разности µ , среднеквадра-
тические погрешности (СКПσ ). 

 
Таблица 3.12 

Разности значений между чистыми аномалиями силы тяжести,  
вычисленными по современным глобальным моделям геопотенциала,  

и наземными данными 

Модели 

геопотенциала 
maxX  

(мГал) 

minX  

(мГал) 

R  

(мГал) 

µ  

(мГал) 

СКПσ  

(мГал) 

XGM2019e_2159  21,71 –12,31 34,02 –4,31 5,20 

GOCO2025s 37,19 -27,85 65,04 4,39 9,80 

 
Результаты, представленные в табл. 3.12, позволяют сделать вывод, что 

СКП вычисления чистых аномалий силы тяжести по данным ультравысо-
костепенной модели XGM2019e_2159 составляет 5,20 мГал, что на 45 % 
лучше результатов, полученных по данным спутниковой модели 
GOCO2025s. Спутниковая модель GOCO2025s показала СКП, равную 9,80 
мГал.  

Картосхемы разностей представлены на рис. 3.26 и 3.27. 
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Рис. 3.26. Картосхема разностей наземных значений и результатов 

определения чистых аномалий силы тяжести по модели геопотенциала 
XGM2019e_2159 на территорию Новосибирской области 

 

 
Рис. 3.27. Картосхема разностей наземных значений и результатов 

определения чистых аномалий силы тяжести по модели геопотенциала 
GOCO2025s на территорию Новосибирской области 
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Точность восстановления значений смешанных и чистых аномалий си-
лы тяжести по данным глобальной ультравысокостепенной модели 
XGM2019e_2159 составляет 5,2 мГал.  

3.2.3. Опыт определения изменения смешанных аномалий  
силы тяжести по данным миссии GRACE и GRACE FO 

на территории Новосибирской области 

Исходными данными для выполнения исследования являются времен-
ные модели гравитационного поля Земли в формате GFZ, созданные на ос-
нове результатов космических гравиметрических миссий GRACE и GRACE 
FO, представленных в открытом доступе на сайте международного центра 
International Center for Global Gravity Field Models (ICGEM) [18].  

В экспериментальных исследованиях использованы данные 77 времен-
ных глобальных моделей гравитационного поля, по четыре модели в раз-
ные сезоны (март, июнь, сентябрь, декабрь) с 2002 по 2022 гг. Исключе-
нием является период с осени 2017 г., когда миссия GRACE завершилась, 
до весны 2018 г., когда начала работу GRACE FO. Выбор периодичности 
измерений обусловлен желанием выявить закономерности сезонных из-
менений аномалии силы тяжести (АСТ) на исследуемой территории [25]. 

Исследования изменений АСТ по данным космических миссий 
GRACE и CRACE FО выполнены для 28 пунктов территории Новосибир-
ской области (рис. 3.28). Рельеф исследуемой территории неоднороден. 
Большая часть территории расположена на равнине Обь-Иртышского 
междуречья, где высоты пунктов не превышают 200 метров. Наиболее 
возвышенный район – Салаирский кряж – древние горы с абсолютными 
отметками высот до 450 м [26]. 

 



 

263 

 

Рис. 3.28. Схема расположения гравиметрических пунктов  
на территории Новосибирской области 

 
 
Вычисления характеристик гравитационного поля Земли выполнены в 

программе, разработанной в лаборатории физической геодезии СГУГиТ [27].  
Значения АСТ для пунктов на исследуемой территории выполнено по 

формулам (3.35), (3.36).  
Временные вариации АСТ в исследуемом регионе получены по дан-

ным миссии GRACE и GRACE FO с дискретностью 3 месяца за период с 
июня 2002 г. по июнь 2022 г.  

Вариации АСТ по всем временным моделям геопотенциала вычисля-
ются относительно значений, полученных по данным миссии GRACE в 
марте 2002 г. Исходные значения аномалии силы тяжести, вычисленные 
на март 2002 г., приняты за «нулевое» отчетное значение. 

На рис. 3.29–3.31 приведены графики изменения среднегодовых значе-
ний аномалий силы тяжести на 28 пунктах территории Новосибирской об-
ласти за период с 2002 по 2022 гг. (без учета сезонных вариаций). Также 
на графиках нанесены линии тренда с прогнозом изменения характери-
стики ГПЗ до 2024 гг.  
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Рис. 3.29. Графики изменения среднегодовых значений аномалии силы  

тяжести на пунктах с 1 по 9 за период с 2002 по 2022 гг. (в мкГал) 
 

 
Рис. 3.30. Графики изменения среднегодовых значений аномалии силы  

тяжести на пунктах с 10 по18 за период с 2002 по 2022 гг. (в мкГал) 
 

 
Рис. 3.31. Графики изменения среднегодовых значений аномалии силы 

тяжести на пунктах с 19 по 28 за период с 2002 по 2022 гг. (в мкГал) 
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Анализируя графики, приведенные на рис. 3.29–3.31, можно сделать 
следующие выводы: 

– максимальные изменения среднегодовых значений аномалии силы 
тяжести для 28 пунктов территории Новосибирской области составили от 
–3,0 до –4,5 мкГал; 

– с 2002 по 2006 гг. изменения средних значений аномалии силы тяже-
сти уменьшались от –3,0 до –4,0 мкГал, с 2007 по 2022 гг. значения изме-
нения изучаемой характеристики ГПЗ изменялись в пределах ±2,5 мкГал;  

– линия тренда характеризует уменьшение значений аномалии силы 
тяжести за исследуемый период вычислений; 

– полученные вариации среднегодовых значений аномалий силы тяжести 
для 28 пунктов на территории Новосибирской области находятся на пределе 
точности гравиметрической аппаратуры, которая составляет 5 мкГал. 

Для анализа изменений сезонных вариаций значений аномалии силы 
тяжести выполнены вычисления по данным 77 временных моделей геопо-
тенциала для 28 пунктов на исследуемой территории. 

Используя полученные результаты, для каждого пункта вычислен диа-
пазон изменений характеристик ГПЗ в период с марта 2002 по март 2022 
гг. Результаты представлены в табл. 3.13. 
 

Таблица 3.13 
Изменения характеристик гравитационного поля на пунктах территории  

Новосибирской области с марта 2002 по 2022 гг. 

 Изменения аномалии силы тяжести  
(мкГал) 

 Максимальное значение Минимальное значение Диапазон 
1 4,94 -9,70 14,63 
2 5,94 -8,29 14,24 
3 7,56 -6,20 13,76 
4 7,10 -7,70 14,81 
5 4,73 -9,38 14,12 
6 6,04 -8,58 14,62 
7 7,28 -6,20 13,48 
8 6,80 -7,49 14,29 
9 7,79 -5,79 13,57 

10 7,95 -5,64 13,59 
11 7,24 -5,07 12,31 
12 8,27 -4,09 12,36 
13 7,88 -4,60 12,48 
14 7,77 -4,81 12,58 
15 7,86 -5,60 13,46 
16 4,86 -9,33 14,19 
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Окончание табл. 3.13 
 Изменения аномалии силы тяжести (мкГал) 
 Максимальное значение Минимальное значение Диапазон 

17 6,61 -7,50 14,11 
18 5,70 -9,00 14,70 
19 3,90 -10,08 13,98 
20 5,88 -9,13 15,01 
21 7,37 -6,33 13,70 
22 7,09 -7,58 14,67 
23 6,69 -8,46 15,15 
24 7,52 -7,00 14,52 
25 7,53 -7,26 14,79 
26 7,90 -5,84 13,74 
27 7,78 -5,43 13,21 
28 3,95 -10,09 14,04 

 
Из табл. 3.13 видно, что максимальный диапазон вариаций аномалии 

силы тяжести за исследуемый период зафиксирован на пункте № 23 и со-
ставляет 15,15 мкГал, минимальный диапазон ‒ на пункте № 11 и состав-
ляет 12,31 мкГал.  

На рис. 3.32 приведен график сезонных изменений аномалии силы тяжести 
для точки № 23, на которой зафиксирован максимальный диапазон вариаций. 

 

 

Рис. 3.32. График сезонных изменений значений аномалии силы тяжести 
для 23-го пункта за период с 2002 по 2022 гг. (в мкГал) 

 
 
Анализируя график на рис. 3.36, можно отметить периодичность изме-

нений исследуемой характеристики ГПЗ: с осени до весны изменения зна-
чений характеристики ГПЗ увеличивается, с весны до осени – уменьшение 
значений. Минимальное значение вариации аномалии силы тяжести  
в точке №23 зафиксировано осенью 2012 года и составило –8,46 мкГал, 
максимальное значение – весной 2017 года составило 6,69 мкГал.  
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Наблюдаемая закономерность на графике может быть объяснена сезон-
ным перераспределением воздушных и водных масс – сезонными измене-
ниями уровня воды в реках и озерах, а также колебаниями уровня Мирово-
го океана, изменениями массы льда и снега на поверхности Земли [28].  

3.2.4. Выводы по параграфу 3.2 

Средние квадратические погрешности восстановления смешанных  
и чистых аномалий силы тяжести по глобальной комбинированной моде-
ли гравитационного поля XGM2019e_2159 отличаются на 0,17%. Полу-
ченные результаты позволяют сделать вывод о том, что современные ком-
бинированные глобальные модели гравитационного поля можно исполь-
зовать для получения чистых аномалий силы тяжести на пунктах земной 
поверхности в пределах точности моделирования. 

При создании комбинированных моделей привлекается информация о 
наземном гравитационном поле. Это позволяет получить величину СКП 
значений аномалий силы тяжести меньше, чем для чисто спутниковых 
моделей геопотенциала.  

Полученные результаты позволяют сделать вывод о возможности изу-
чения изменений АСТ во времени на основе данных космических грави-
метрических миссий GRACE и GRACE FO. Космические проекты CRACE 
(CRACE FО) обеспечили не только высокую точность определения харак-
теристик гравитационного поля Земли, но и выход на новый уровень изу-
чения его временных вариаций в планетарных масштабах. 

Для более полного изучения природы изменений АСТ на территории 
Новосибирской области необходимо продолжить исследования с исполь-
зованием новых данных, полученных в ходе космических гравиметриче-
ских миссий и наземных измерений. Это позволит детальнее изучить при-
роду изменений, создать высокоточные модели АСТ с учетом их измене-
ния в пространстве и во времени на любую территорию, установить связи 
вариаций ГПЗ с различными геодинамическими процессами на поверхно-
сти Земли и в ее недрах, а также в околоземном пространстве. 

Результаты исследования позволят оптимизировать деятельность по полу-
чению и использованию достоверной и качественной информации о характе-
ристиках гравитационного поля Земли, которая является важной составляю-
щей функционирования экономики и обороноспособности государства. 
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ПРИЛОЖЕНИЕ А 
(обязательное) 

КАРТОГРАММЫ РЕЗУЛЬТАТОВ ГРАВИМЕТРИЧЕСКИХ СЪЕМОК  
НА ТЕРРИТОРИЮ СИБИРСКОГО ФЕДЕРАЛЬНОГО ОКРУГА 

 

 
Рис. А.1. Картограмма результатов гравиметрических съемок  

на территорию Новосибирской области. Площади съемок масштаба 
1:200 000: 1 – выполненные; 2 – съемка не выполнялась  

 

 
Рис. А.2. Картограмма результатов гравиметрических съемок  

на территорию Омской области. Площади съемок масштаба 1:200 000:  
1 – выполненные; 2 – съемка не выполнялась 
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Рис. А.3. Картограмма результатов гравиметрических съемок  
на территорию Томской области. Площади съемок масштаба  

1:200 000: 1 – выполненные; 2 – съемка не выполнялась 
 

 
Рис. А.4. Картограмма результатов гравиметрических съемок  

на территорию Сибирского федерального округа. Площади съемок  
масштаба 1:200 000: 1 – выполненные; 2 – съемка не выполнялась
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