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ВВЕДЕНИЕ 

В учебное пособие по части курса включен теоретический материал 
по дисциплине «Оптическая физика», предназначенный для обучающихся 
СГУГиТ. 

В учебном пособии рассматриваются преобразования (изменения) 
световой волны отражающими, преломляющими и дифрагирующими оп-
тическими элементами. Эти преобразования базируются на основе волно-
вых представлений о свете. Для сравнения приводятся формулы сфериче-
ских линз и зеркал, получаемые из теории геометрической оптики. В от-
личие от известных учебных курсов по физической оптике, в которых 
изучаются свойства лишь рефракционных линз, в данном учебном посо-
бии рассматриваются плоские дифракционные и голографические линзы, 
которые в настоящее время производятся серийно и находят все более 
широкое практическое применение. Также в этом пособии более подробно 
излагаются границы применимости формул, описывающих преобразова-
ния световой волны зеркалами и линзами. 
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1. ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ 

Световая волна (свет) – это электромагнитная волна, различаемая гла-
зом человека. Видимый диапазон электромагнитного спектра составляет 
незначительную часть (менее 0,1 %) оптического диапазона спектра. Оп-
тический диапазон спектра включает в себя видимый (0,38–0,78 мкм), ин-
фракрасный (0,78–1 000 мкм), ультрафиолетовый (0,01–0,38 мкм) и мяг-
кий рентгеновский диапазоны электромагнитного спектра (10–4–10–2 мкм). 
Инфракрасный диапазон, в свою очередь, подразделяется на ближний 
(0,78–1,4 мкм), коротковолновый (1,4–3 мкм), средний (3–8 мкм), длинно-
волновый (8–15 мкм) и удаленный (15–1 000 мкм) диапазоны. Ультрафио-
летовый диапазон также подразделяется на ближний (0,3–0,4 мкм), сред-
ний (0,2–0,3 мкм), дальний (0,1–0,2 мкм) и экстремальный (0,01–0,1 мкм) 
диапазоны. Дальний и экстремальный ультрафиолетовые диапазоны вме-
сте называют еще вакуумным ультрафиолетовым диапазоном, так как из-
лучение этого диапазона (0,01–0,2 мкм) поглощается воздухом. Указанные 
значения длин волн относятся к волнам оптического диапазона в вакууме. 
Границы диапазонов и поддиапазонов спектра носят несколько условный 
характер, так как существуют варианты разбиения оптического диапазона 
с другими границами, особенно для инфракрасного и мягкого рентгенов-
ского диапазонов. 

Во всех этих областях оптического диапазона, несмотря на некоторые 
особенности, применяются одни и те же физические величины и законы 
для описания процессов распространения световой волны в средах и вза-
имодействия световой волны с физическими телами.  

В настоящем учебном пособии ограничимся рассмотрением световой 
волны, т. е. оптического излучения видимого диапазона спектра. 

Оптические элементы – это элементы, осуществляющие преобразова-
ние световой волны. К преобразованиям световой волны относятся изме-
нение направления и величины скорости световой волны, изменение фор-
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мы и размеров волнового фронта, изменение амплитуды (интенсивности), 
вектора поляризации, спектрального диапазона и других величин, харак-
теризующих световую волну. 

Классические оптические элементы подразделяются на рефлектор-
ные, рефракционные, дифракционные, поляризационные. В последние го-
ды интенсивно развиваются оптические элементы-формирователи, созда-
ющие заданное пространственное распределение амплитуды и фазы све-
товой волны, оптические элементы-манипуляторы, преобразующие дав-
ление «вихревой» световой волны в механическое движение частиц и ма-
леньких тел. 

Оптическая система – это система, состоящая из одного или более оп-
тических элементов, которые выполняют заданные преобразования свето-
вой волны. Например, оптическая система может преобразовать световую 
волну, отраженную от предмета таким образом, что она сформирует уве-
личенное или уменьшенное изображение предмета. 

Пространство предметов – это часть пространства (или все простран-
ство), в котором находятся реальные (мнимые) предметы и распространя-
ется световая волна в направлении от предметов (к предметам).  

Пространство изображений – это часть пространства (или все про-
странство), в котором находятся действительные или мнимые изображе-
ния предметов и распространяются световые волны, формирующие эти 
изображения. Пространство предметов и пространство изображений могут 
быть как раздельными, так и совмещенными. 

В технической и учебной литературе часто используют другие терми-
ны. Так, линзовые оптические системы называются диоптическими си-
стемами, зеркальные оптические системы – катаоптическими, зеркально-
линзовые системы – катадиоптическими системами. 

Центрированная оптическая система – это система оптических эле-
ментов, центры кривизны поверхностей которых расположены на одной 
оси. Эта ось называется главной оптической осью. Оптические элементы, 
как правило, расположены перпендикулярно этой оптической оси. Цен-
трированная оптическая система может состоять из двух и более центри-
рованных подсистем. 
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Децентрированная оптическая система – это система оптических эле-
ментов, центры кривизны которых смещены, оптические оси элементов 
наклонены относительно главной оптической оси. 

К классическим физическим теориям оптики, описывающим оптические 
элементы и системы, относятся геометрическая оптика и волновая оптика. 

В геометрической оптике считается, что свет распространяется вдоль 
направленных линий (называемых лучами света). Распространение света  
в виде пучков лучей происходит в соответствии с законами геометриче-
ской оптики [1–3]: 

а) закона прямолинейного распространения лучей света; 
б) закона независимости лучей света; 
в) закона отражения лучей света от плоской поверхности; 
г) закона преломления лучей света на плоской границе двух сред. 
Эти законы геометрической оптики (кроме закона независимости лучей 

света) являются следствиями принципа Ферма: принципа минимальности 
времени, затрачиваемого при распространении луча света от одной точки 
среды до другой, при этом свет может проходить через границы сред.  

В геометрической оптике формулируется принцип обратимости лучей 
света, применяемый в случае преобразования оптическим элементом од-
ной световой волны в одну световую волну. Если же оптический элемент 
преобразовывает одну волну в две или более волн, то принцип обратимо-
сти не применим. Законы геометрической оптики применимы к оптиче-
ским элементам, представляющим собой изотропные прозрачные среды  
и имеющим гладкие (полированные) поверхности.  

В теории волновой оптики свет представляется в виде электромаг-
нитной волны [4–9]. Распространение проходящей световой волны через 
оптические элементы (или отраженной световой волны от оптических 
элементов) описывается законами волновой оптики (законами дифракции, 
интерференции, поляризации, дисперсии т. д.). Законы геометрической 
оптики могут быть получены из волновых представлений о свете, если 
пренебречь длиной световой волны по сравнению с размерами тел.  

Представление о лучах света используется и в теории волновой опти-
ки для расчета оптического пути, пройденного световой волной в среде. 
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При этом лучи всегда перпендикулярны к волновой поверхности света. 
Любому участку волновой поверхности сферической расходящейся или 
сходящейся световой волны соответствует гомоцентрический пучок лу-
чей, сходящихся в одну точку или расходящихся из одной точки, как по-
казано на рис. 1.1. 

 

 

Рис. 1.1. Пучки лучей: 1 – сходящийся гомоцентрический;  
2 – расходящийся гомоцентрический  

 
 
В теории изображений, формируемых оптическими элементами, 

предполагается (согласно принципу Гюйгенса – Френеля), что каждая 
точка поверхности предмета испускает сферическую волну и от каждой 
точки предмета на оптический элемент падает гомоцентрический пучок 
лучей. Идеальная оптическая система преобразует эти пучки от точек 
предмета в гомоцентрические пучки, формирующие точки изображения 
предмета. Если изображение единственное, то каждой точке предмета со-
ответствует только одна точка изображения. Эти точки называются со-
пряженными. Поверхности, образуемые сопряженными точками, называ-
ются сопряженными поверхностями. 

Изображение, формируемое идеальной оптической системой, являет-
ся идентичным или подобным предмету и отличается лишь размером. 

Изопланарная оптическая система – оптическая система, в которой 
при смещении предмета его изображение перемещается, не изменяя фор-
мы и размеров. 

Идеальными и изопланарными являются плоские зеркала и оптиче-
ские системы из плоских зеркал. Идеальным и изопланарным оптическим 

1 

2 
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элементом является в параксиальной области плоскопараллельная пласти-
на. Параксиальные лучи – это лучи света, распространяющиеся под малы-
ми углами наклона вблизи главной оптической оси. Параксиальной обла-
стью оптического элемента называется область элемента, через которую 
проходят (от которой отражаются) параксиальные лучи света. 

Раздел оптики, в котором изучаются законы и величины, характери-
зующие распространение параксиальных лучей в оптических элементах  
и в оптических системах, называется оптикой Гаусса. 

При расчете и анализе оптических элементов широко применяется 
метод характеристической функции. Характеристическая функция – это 
функция, равная разности оптических путей очень узких пучков волн, вы-
ходящих из точки предмета и сходящихся в сопряженную точку изобра-
жения. При этом один из узких пучков проходит через центр оптического 
элемента, а другой – через произвольную точку этого элемента. Если зна-
чение характеристической функции равно нулю или меньше четверти ра-
бочей длины волны, то изображение точки предмета имеет дифракцион-
ное качество и является безаберрационным. По сути, характеристическая 
функция позволяет определить волновую аберрацию – отклонение волно-
вого фронта в произвольной точке оптического элемента от фронта сфе-
рической волны, сходящейся в точку изображения. Анализ изображающих 
свойств дифракционных оптических элементов осуществляется приравни-
ванием нулю первых членов разложения характеристической функции  
в ряд по малым параметрам. В качестве малых параметров выступают от-
ношения поперечной координаты произвольной точки оптического эле-
мента к расстояниям от этого элемента до предметной плоскости и до 
плоскости изображения. Для параксиальных точек оптического элемента 
(т. е. точек вблизи центра элемента) наибольший вклад в характеристиче-
скую функцию вносят первые члены разложения в ряд, зависящие в пер-
вой и во второй степени от расстояния между центром оптического эле-
мента и его произвольной точкой. Поэтому для уменьшения величины ха-
рактеристической функции приравниваются нулю именно первые члены 
разложения. Из условий равенства нулю первых членов разложения ха-
рактеристической функции принято определять координаты точки изоб-
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ражения, причем точка изображения определяется как в меридиональной 
плоскости, так и в сагиттальной плоскости оптического элемента. 

Следует отметить, что основные термины и определения величин, ис-
пользуемые в оптике, устанавливаются действующими Государственными 
стандартами СССР ГОСТ 7427–76. Геометрическая оптика и ГОСТ 7601–
78. Физическая оптика [10, 11].  
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2. ОТРАЖЕНИЕ СВЕТА ПЛОСКИМ ЗЕРКАЛОМ 

Рассмотрим формирование изображения точек предмета плоским зер-
калом. При освещении предмета световой волной согласно принципу 
Гюйгенса – Френеля от каждой j-й точки предмета распространяется сфе-
рическая волна  

 

,j jik rj
j

j

A
E e

r
−=





 

 

где jE


 и 
j

j

r
A


 – соответственно световой вектор (вектор напряженности 

электрического поля) и амплитуда этого вектора в заданной точке свето-
вой волны; kj – волновое число; rj – модуль радиус-вектора, направленного 
от точки предмета (источника волны) до заданной точки световой волны. 
Знак минус перед фазой kjrj световой волны указывает, что сферическая 
волна является расходящейся. 

Построим рис. 2.1, на котором укажем плоское зеркало и плоскость 
предмета, расположенную на расстоянии s от поверхности зеркала.  

 
Плоскость зеркала 

Плоскость предмета                                    Плоскость изображения 

 
Рис. 2.1. Схема построения изображения S' осевой точки S предмета 

P 

S S' O 

α 

α' 

z 

y 

s' s 
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Проведенная перпендикулярно к поверхности зеркала через осевую 
точку S предмета и точку O зеркала ось координат Oz является оптической 
осью зеркала. 

Рассмотрим световую волну, распространяющуюся из осевой точки S 
предмета в направлении зеркала. Определим изображение осевой точки S, 
формируемое плоским зеркалом, и формулу плоского зеркала, используя 
сначала законы геометрической оптики.  

Проведем из осевой точки S предмета луч света перпендикулярно  
к поверхности плоского зеркала, как показано на рис. 2.1. Этот луч отра-
зится назад. Проведем из этой же точки S еще один луч в произвольную 
точку Р поверхности зеркала. Угол падения луча в точке Р обозначим α,  
а угол отражения α'. Продолжим в обратном направлении луч, отражен-
ный в точке Р (на рис. 2.1 это показано штрихами), до пересечения в точке 
S' с оптической осью Oz. Точка S' будет изображением осевой точки S 
предмета, то есть точки S' и S являются сопряженными. Расстояние  
от зеркала до точки изображения S' обозначим s'. 

Из равенства углов падения α и отражения α' следует, что треугольни-
ки SOP и OS'P на рис. 2.1 равны. Поэтому расстояния s (от зеркала до осе-
вой точки S предмета) и s' (от зеркала до осевой точки S' изображения) 
равны. Применяя эти рассуждения к каждой точке предмета, получаем из 
закона отражения формулу плоского зеркала: расстояние s от каждой 
точки предмета до плоского зеркала равно расстоянию s' от зеркала до 
сопряженной точки изображения предмета 

 

s = s'.                                                    (2.1) 
 

Эта формула позволяет очень быстро определять положение действи-
тельных и мнимых изображений, формируемых плоскими зеркалами. 
Примеры формирования изображений плоскими зеркалами представлены 
на рис. 2.2 а, б, из которых следует, что линейный коэффициент увеличе-
ния βy и βz плоского зеркала равен 

– вдоль оси Оу: βy = 1; 
– вдоль оптической оси Оz: βz = –1. 
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а)                                                                б) 

Рис. 2.2. Формирование изображений плоскими зеркалами:  
а) точка S – осевая точка реального (действительного) предмета,  

точка S' – осевая точка мнимого изображения предмета;  
б) точка S – осевая точка мнимого предмета,  

точка S' – осевая точка действительного изображения предмета 
 
 
Таким образом, плоское зеркало обладает свойством формирования 

мнимого и действительного изображения (см. рис. 2.2, а, б). Плоское зер-
кало формирует мнимое (действительное) изображение предмета на про-
тивоположной стороне зеркала и на таком же удалении от поверхности 
зеркала. С помощью плоского зеркала можно повернуть или перевернуть 
изображение предмета на 180°, при этом у предмета и у изображения 
форма и размеры остаются одинаковыми.  

Плоское зеркало формирует безаберрационное (неискаженное) изоб-
ражение всех мельчайших деталей предмета, если не учитывать влияние 
краев зеркала, то есть считать плоское зеркало бесконечным. 

В теории геометрической оптики учет краев зеркала приводит к огра-
ничению его поля зрения, в то время как в теории волновой оптики учет 
краев зеркала приводит к фундаментальным особенностям в отраженной 
от него волне и в мнимом (действительном) изображении точек предмета. 

Рассмотрим влияние краев плоского зеркала на формирование изоб-
ражения точек предмета на примере осевой точки S (см. рис. 2.1). Для это-
го запишем характеристическую функцию V плоского зеркала для волны 
из осевой точки S предмета. Эта характеристическая функция V представ-
ляет собой волновую аберрацию отраженной от зеркала световой волны  
и может быть представлена в виде 

P 

y 

O z S' S 

P 

y 

O z S S' 
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),(2222 ssysysV ′−−+′−+=                              (2.2) 
 

где у – координата произвольной точки Р зеркала. 
Условие формирования идеального изображения плоским зеркалом мо-

жет быть сформулировано следующим образом: модуль характеристической 
функции (2.2) должен быть меньше или равен четверти длины волны света  

 

2 2 2 2 ( ) λ / 4,s y s y s s′ ′+ − + − − ≤                              (2.3) 
 

где λ – длина световой волны. 
Разлагая в ряд квадратные корни в (2.3), получаем для параксиальной 

области зеркала (при у << s, y << s') условия  
 

2λ 1 1 λ
4 2 4

y
s s

 − ≤ − ≤ ′   
 

или 
 

2 2
1 λ 1 1 λ

2 2s s sy y
− ≤ ≤ +

′  .                                     (2.4) 

 

Из условий (2.4) при длине световой волны λ много меньше коорди-
наты у следуют условия формирования безаберрационного изображения 
предмета плоским зеркалом  

 

2 2
λ λ1 1

2 2
s ss s s
y y

   
′− ≤ ≤ +   

   
 .                                 (2.5) 

 

Следствия из условия (2.5): 
1) учет размеров зеркала приводит к формированию изображения не в 

одной плоскости, перпендикулярной оптической оси, а в области простран-
ства некоторой протяженностью вдоль оптической оси зеркала, т. е. имеет 
место неопределенность Δs' = ± s2λ/2y2 положения плоскости изображения; 

2) при равенстве нулю длины волны света (λ = 0), т. е. в приближении 
геометрической оптики, получаем формулу (2.1) плоского зеркала s = s'; 
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3) для бесконечного зеркала (координата у точки Р зеркала стремится 
к бесконечности) из условий (2.5) следует формула (2.1) плоского зеркала 

 

s = s'. 
 

Оценим численно величину неопределенности Δs' = s2λ/2y2 при сле-
дующих заданных величинах для квадратных зеркал:  

 

1) s = 100 мм, λ = 5·10–4 мм, y = 50 мм, 
 

2 4 2
3

2 2
λ 5 10 100 10 мм;
2 2 50

ss
y

−
−⋅ ⋅′∆ = = =

⋅
 

 

2) s = 100 мм, λ = 5·10–4 мм, y = 5 мм, 
 

2 4 2

2 2
λ 5 10 100 0,1 мм.
2 2 5

ss
y

−⋅ ⋅′∆ = = =
⋅

 

 

Таким образом, при длине и ширине плоского зеркала по 100 мм  
и расположении предмета и мнимого изображения на расстоянии 100 мм 
величина неопределенности Δs' плоскости изображения порядка длины 
волны света, поэтому ею можно пренебречь. Тогда как для зеркала, име-
ющего длину и ширину по 10 мм, получаем величину неопределенности 
положения плоскости изображения Δs' = 0,1 мм. Этой величине соответ-
ствует точка в виде пятна размером 20 мкм, т. е. каждая точка предмета  
на его изображении, сформированном плоским зеркалом, расплывается  
в пятно размером (диаметром) 20 мкм.  

Из условия (2.3) получаем, что формирующая изображение точки 
предмета световая волна обладает неопределенностью фазы, что соответ-
ствует волновой аберрации порядка λ/4. Таким образом, учет краев зерка-
ла приводит к фундаментальной неопределенности фазы монохроматиче-
ской предметной волны при формировании ею изображения предмета.  

Оптические зеркальные системы 

На рис. 2.3, а, б представлены два примера оптических систем из двух 
плоских зеркал. Зеркальные системы предназначены для переноса  
и наклона оптической оси, переноса в заданную точку пространства изоб-
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ражения предмета, переворота и наклона изображения на заданный угол. 
Плоские зеркала используются в оптических устройствах наблюдения,  
в интерференционных и дифракционных приборах. 

 

 
б) 

Рис. 2.3. Схемы оптических систем из двух плоских зеркал  
для формирования: а) мнимого неперевернутого изображения S' предмета;  

б) мнимого перевернутого изображения S' 
 
 
Системы из плоских зеркал используются для уменьшения габаритов 

оптических систем устройств.  
Часто на практике используется полупрозрачное зеркало для разделе-

ния одной световой волны на две (прошедшую и отраженную) с заданны-
ми значениями амплитуд. Полупрозрачное зеркало позволяет в отражен-
ном свете сформировать второе (дополнительное) изображение предмета. 

Примеры применения плоских зеркал, полупрозрачных зеркал в оп-
тических системах рассматриваются в рамках учебных дисциплин «Тео-
рия оптических приборов» и «Прикладная оптика».   

S' 

S 

S 

S' 

а) 
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3. ОТРАЖЕНИЕ СВЕТА СФЕРИЧЕСКИМ ЗЕРКАЛОМ 

Рассмотрим преобразование световой волны сферическим зеркалом 
на примере сферического вогнутого зеркала, представленного на рис. 3.1. 
Точка О является центром поверхности сферического зеркала. Через эту 
точку О и центр кривизны R поверхности зеркала проведем ось Oz, явля-
ющуюся оптической осью сферического зеркала. Плоский предмет распо-
ложим перпендикулярно оптической оси на расстоянии s от центра О по-
верхности зеркала. Для описания распространения расходящейся из осе-
вой точки S предмета сферической световой волны до зеркала и отражен-
ной от зеркала волны, формирующей изображение точки предмета, вос-
пользуемся сначала представлениями геометрической оптики.  

 

 

Рис. 3.1. Схема построения изображения S'  
осевой точки S предмета вогнутым сферическим зеркалом 

 
 
Проведем два луча света из осевой точки S предмета. Первый луч 

направим вдоль оптической оси и в точке О зеркала этот луч отразится  
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в обратном направлении. Второй луч направим в произвольную точку Р 
зеркала, как показано на рис. 3.1. Отразившись от зеркала, второй луч пе-
ресечет оптическую ось в точке S'. Эта точка является изображением точ-
ки S предмета. Расстояние от точки О зеркала до точки S' изображения 
обозначим s'. На рис. 3.1 углы ε и ε' соответственно являются углом паде-
ния и углом отражения, а углы σ и σ' – апертурными углами. 

Выведем формулы, связывающие между собой радиус кривизны  
r = |RO| сферической поверхности зеркала, с расстояниями s и s' – харак-
теристиками сферической волны, испускаемой точкой предмета, и волны, 
формирующей изображение этой точки предмета. 

Из треугольников SPR, RPS' на рис. 3.1 по теореме синусов получаем 
соотношения: 

 

sin σ sin ε ,
r s r

=
−                                               

(3.1) 

 

sin σ sin ε .
r r s

′ ′
=

′−
                                            (3.2) 

 

В параксиальном приближении sinσ ≈ σ, sinσ' ≈ σ', sinε ≈ ε, sinε' ≈ ε'  
и из формулы (3.1) получаем величину угла падения  

 

( )ε ,s r h
rs
−

=                                             (3.3) 

 

где h ≈ σs – расстояние от точки Р до оптической оси (см. рис. 3.1). 

Из формулы (3.2) в параксиальном приближении следует 
 

( )ε ,r s h
rs

′−′ =
′                                              (3.4) 

 

где расстояние h ≈ σ's' (см. рис. 3.1). 

Учитывая закон отражения ε = ε' и приравнивая формулы (3.3) и (3.4), 
получаем 
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.1111
rssr

−
′

=−
                                            

(3.5) 

 

Формула (3.5) является формулой вогнутого сферического зеркала  
с радиусом кривизны r и записывается обычно в виде  

 

.211
rss

=
′

+
                                               

(3.6) 
 

Следствия из формулы (3.6). 
1. При падении плоской волны на сферическое зеркало (s → ∞) рас-

стояние s' равно фокусному расстоянию f, т. е. фокусное расстояние сфе-
рического зеркала равно половине радиуса кривизны r сферической по-
верхности зеркала и отраженная световая волна становится сферически 
сходящейся в точке фокуса. 

2. Оптическая сила D сферического зеркала равна  
 

.21
rf

D ==
 

 

3. При s = r получаем, что s' = r, т. е., если предметную плоскость по-
местить в центр кривизны сферического зеркала, то плоскость изображе-
ния будет совпадать с плоскостью предмета (изображение предмета в па-
раксиальной области будет совпадать с самим предметом). 

4. Если величина расстояния s больше половины радиуса r сфериче-
ской поверхности зеркала, то отраженная световая волна является сходя-
щейся сферической волной и формирует точку действительного изобра-
жения предмета.  

5. При приближении величины расстояния s к половине радиуса r 
сферической поверхности зеркала величина расстояния s' стремится  
к бесконечности и отраженная световая волна становится плоской. 

6.  Если величина расстояния s меньше половины радиуса r сфериче-
ской поверхности зеркала, то отраженная световая волна является расхо-
дящейся сферической волной и формирует точку мнимого изображения 
предмета за сферическим зеркалом (величина s' становится отрицательной).  
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7. При приближении величины s к нулю величина s' также стремится 
к нулю, величиной оптической силы при этом можно пренебречь, т. е. при 
приближении точек предмета вплотную к зеркалу изображение этих точек 
также приближается к зеркалу.  

Рассмотрим вывод формулы (3.6) вогнутого сферического зеркала ме-
тодом характеристической функции.  

Запишем формулу поверхности сферического зеркала в плоскости ко-
ординат yOz 

 

.)( 222 ryrz =+−                                         (3.7) 
 

где у и z – координаты точки Р поверхности сферического зеркала. 
В параксиальном приближении (у и z << r) формула (3.7) может быть 

представлена в виде  
 

.
2

2

r
yz =                                                  (3.8) 

 

Условие формирования идеального (безаберрационного) изображения 
оптическим элементом точки предмета можно сформулировать следую-
щим образом: сферическая световая волна, выходящая из точки предме-
та, должна собираться (отражаться) оптическим элементом и форми-
ровать сопряженную точку изображения, причем разности оптических 
путей всех узких пучков света, вышедших из точки предмета, проходя-
щих оптический элемент (отражающихся от оптического элемента)  
и сходящихся в сопряженной точке изображения, должны быть не более 
четверти длины волны света. 

Для количественного описания изображающих свойств сферического 
зеркала и особенностей преобразования световой волны сферическим зерка-
лом рассмотрим его характеристическую функцию. Для осевой точки пред-
мета и сопряженной точки изображения характеристическая функция V зер-
кала с учетом (3.7) и (3.8) представляется (в параксиальной области) в виде 
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При равенстве характеристической функции V (3.9) нулю получаем 
формулу сферического зеркала, совпадающую с (3.6) 

 

.211
rss

=
′

+
                                           

(3.10) 
 

Учитывая условие формирования идеального изображения 
 

2λ 1 1 2 λ ,
4 2 4

y
s s r

 − ≤ + − ≤ ′ 
                                 (3.11) 

 

получаем, что 
 

2 2
2 1 λ 1 2 1 λ .

2 2r s s r sу у
− − ≤ ≤ − +

′                              (3.12) 

 

Из условий (3.12) следует, что формула (3.10) справедлива для сфери-
ческого зеркала бесконечных размеров (координата точек зеркала у → ∞).  

При конечном размере зеркал (координата у >> λ) из (3.12) следует, 
что имеет место неопределенность продольной координаты положения 
плоскости изображения 

 

,os s s′ ′ ′= ± ∆  
 

где 2o
rss
s r

=′
− – расстояние от центра сферического зеркала до плоскости 

изображения, соответствующего условию (3.10); 
2

2 2
λ( )

2 (2 )
rss

y s r
∆ =′

−
 – величина неопределенности положения плоскости 

изображения вдоль оптической оси сферического зеркала. 
Для падающей плоской волны (s → ∞) величина неопределенности 

фокусного расстояния f = 0,5r сферического зеркала (вдоль оптической 
оси) равна 

 
2 2

2 2
λ λ .
8 2

r fs
y y

′∆ = =
                                          

(3.13) 
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Величина неопределенности поперечной координаты фокуса задается 
из (3.13) выражением 

 

λ .
2o

s y fy
f y
′∆′∆ = =

                                         
(3.14) 

 

Оценим величины неопределенности Δs' (3.13) и Δy'o  (3.14) при: 
1) λ = 5·10–7м, f = 0,5 м и y = 0,025 м: 
 

2 7 2
4

2 2

7
6

λ 5 10 0,5 10 м 100 мкм,
2 2 0,025

λ 5 10 0,5 5 10 м 5 мкм;
2 2 0,025o

fs
y

fy
y

−
−

−
−

 ⋅ ⋅′∆ = = = =
⋅

 ⋅ ⋅′∆ = = = ⋅ =
⋅

 

 

2) λ = 5·10–7 м, f = 0,5 м и y = 0,005 м: 
 

2 7 2
3

2 2

7
5

λ 5 10 0,5 2,5 10 м 2,5 мм,
2 2 0,005

λ 5 10 0,5 2,5 10 м 0,025 мм.
2 2 0,005o

fs
y

fy
y

−
−

−
−

 ⋅ ⋅∆ = = = ⋅ =′
⋅

 ⋅ ⋅∆ = = = ⋅ =′
⋅

 

 

Получаем, что при уменьшении относительного отверстия 2у/f сфери-
ческого зеркала в 5 раз неопределенность продольного положения плоско-
сти изображения увеличивается в 25 раз, а неопределенность поперечного 
положения увеличивается в 5 раз.  

Рассмотрим характеристическую функцию V для внеосевой точки 
предмета в первом приближении 

 

2 22 2
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   
      
   

′ ′ ′= − + − + − + − − + ≈

′
≈ −

′

(3.15) 

 

При равенстве нулю характеристической функции (3.15) получаем, 
что коэффициент линейного увеличения β сферического зеркала равен 
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β .о

о

y s
y s
′ ′= =

                                             
(3.16) 

 

Для формирования идеального изображения внеосевой точки предме-
та сферическим зеркалом должно выполняться условие 

 

λ λ
4 4

о оуy уy
s s

′
− ≤ − ≤

′  
 

или 
λ λ .

4 4
o o

o
s y s ys sy

s y s y
′ ′′ ′′− ≤ ≤ +

                             
(3.17) 

 

Из (3.17) следует, что формула (3.16) выполняется для бесконечных 
сферических зеркал (при у → ∞). Но так как радиус r кривизны сфериче-
ского зеркала имеет конечный размер, получаем, что для внеосевой точки 
предмета имеет место неопределенность поперечной координаты изобра-
жения этой точки предмета, равная  

 

λ .
4o
sy

y
′′∆ =                                              (3.18) 

 

Из (3.18) следует, что неопределенность изображения внеосевых то-
чек предмета меньше неопределенности осевой точки предмета. 

Таким образом, учет размеров (краев) сферического зеркала приводит 
к тому, что любая точка изображения предмета (в параксиальной области 
сферического зеркала) имеет конечный размер, называемый дифракцион-
ным размером точки изображения и определяемый формулами (3.14)  
и (3.18). Этот факт является следствием имеющей место неопределенно-
сти фазы световой волны, формирующей изображение предмета [12].  

Из выражения (3.16) следует, что в параксиальной плоскости сфериче-
ского зеркала коэффициент линейного увеличения β в каждой точке плос-
кости изображения один и тот же. Из выражений (3.10) и (3.16) следует, что 
в параксиальной области плоскость изображения, перпендикулярная опти-
ческой оси, сопряжена с плоскостью предмета, также перпендикулярной 
этой оптической оси. Таким образом, в параксиальной плоскости сфериче-
ское зеркало, формирующее плоское изображение и удовлетворяющее 
условиям (3.11) и (3.17), является идеальным оптическим элементом.   
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4. ПРЕЛОМЛЕНИЕ СВЕТА ЛИНЗОЙ  
В ПРИБЛИЖЕНИИ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ 

Рассмотрим формулы, в соответствии с которыми линза преобразует 
расходящуюся световую волну от предмета в волну, формирующую изоб-
ражение этого предмета.  

Известно, что толстая линза может быть представлена в виде двух со-
пряженных параллельных плоскостей, перпендикулярных ее оптической 
оси, на которых имеет место преломление световой волны (рис. 4.1). 
Предполагается, что в результате преломления между этими плоскостями 
распространяется плоская световая волна параллельно оптической оси. 
Если предмет поместить в одной из этих плоскостей, то изображение 
предмета с увеличением, равным единице, формируется во второй плос-
кости. Эти две плоскости называются главными плоскостями линзы. 
Главная плоскость, которую световая волна проходит сначала, называется 
передней главной плоскостью, а вторая плоскость является задней глав-
ной плоскостью. 

 

 

Рис. 4.1. Модельное представление толстой линзы,  
формирующей изображение предмета 
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На рис. 4.1 представлена модель толстой линзы, формирующей дей-
ствительное изображение точки А предмета с координатой у. Точки Н и Н´ 
пересечения передней и задней главных плоскостей с оптической осью 
называются соответственно передней и задней главными точками линзы. 
Переднее фокусное расстояние f – это расстояние вдоль оптической оси 
между передней главной точкой Н и передним фокусом F. Заднее фокус-
ное расстояние f ´ – это расстояние между задней главной точкой Н´  
и задним фокусом F´. Расстояние от предмета до переднего фокуса F обо-
значено z, расстояние от заднего фокуса F´ до изображения обозначено z´. 
Расстояния s и s´ – это расстояния от главных точек Н и Н´ соответственно 
до предмета (предметной плоскости) и изображения (плоскости изобра-
жения), как показано на рис. 4.1 [4].  

Из точки А предмета проведем два луча: первый луч параллельно оп-
тической оси, а второй луч – через передний фокус F. Далее первый луч 
проходит через переднюю главную плоскость линзы в точке N, преломля-
ется на задней главной плоскости в точке N´ и проходит через задний фокус 
F´ линзы. Второй луч преломляется на передней главной плоскости в точке 
P и далее распространяется параллельно оптической оси. Точка пересече-
ния А´ первого и второго луча является изображением точки А предмета. 

Из подобия треугольников SAF и FHP на рис. 4.1 следует  
 

,
z
f

y
y

=
′

                                                   (4.1) 
 

а из подобия треугольников S´A´F´ и F´H´N´  
 

.
f
z

y
y

′
′

=
′

                                                   (4.2) 
 

Приравнивая (4.1) и (4.2), получаем известную формулу Ньютона 
 

.ffzz ′=′  
 

Учитывая, что z = s – f и z' = s' – f ' из (4.1) и (4.2), можем записать 

f
fs

fs
f

′
′−′

=
−  

 

или  
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.fsfsss ′+′=′                                               (4.3) 
 

Поделив выражение (4.3) на ss', получаем формулу отрезков 
 

.1=
′
′

+
s
f

s
f

                                               
(4.4) 

 

Для линзы, находящейся в оптически однородной среде, передний  
и задний фокусные расстояния равны f = f'. В этом случае формула отрез-
ков (4.4) представляется в виде 

 

,111 D
fss

==
′

+
                                            

(4.5) 
 

где D – оптическая сила линзы. 
Следствия из формулы (4.5). 
1. Если предмет удалить на бесконечное расстояние от линзы (s → ∞), то 

она сформирует изображение в задней фокусной плоскости. От каждой точки 
предмета на линзу будет падать плоская световая волна, а прошедшая линзу 
световая волна станет сферической волной, сходящейся в точку изображения. 

2. Если предмет (предметную плоскость) поместить в передний фокус 
линзы (s = f ), то изображение будет формироваться линзой на бесконеч-
ности s' → ∞, т. е. расходящаяся из точки предмета световая волна после 
прохождения линзы станет плоской световой волной.  

3. Если предмет находится от линзы на расстоянии s, большем фокус-
ного расстояния f, то прошедшая через линзу световая волна является схо-
дящейся сферической волной и формирует точку действительного изоб-
ражения предмета.  

4. Если предмет (предметная плоскость) находится на расстоянии s, 
меньшем фокусного расстояния линзы, то прошедшая линзу световая вол-
на является расходящейся сферической волной и формирует точку мнимо-
го изображения предмета (величина s' становится отрицательной).  

5. При приближении предмета вплотную к линзе, когда величина рассто-
яния s приближается к нулю, величина s' также стремится к нулю, так как в 
(4.5) величиной оптической силы линзы можно пренебречь, т. е. при прибли-
жении предмета к линзе изображение предмета также приближается к линзе.  

Коэффициент поперечного увеличения βу из (4.1) и (4.2) равен 
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β .у
у f s f
у s f f
′ ′ ′−

= = =
′−                                      

(4.6) 
 

Из формулы (4.6) следует, что 
 

11 ,
β

(1 β ).

y

y

s f

s f

 
=  +  

 

′ ′= +
                                              

(4.7) 

 

При делении выражений для s и s' в (4.7) друг на друга получаем 
 

β ,y
s f
s f
′ ′

=  
 

или 
 

β .y
fs
f s

′
=

′                                                   
(4.8) 

 

Таким образом, коэффициент поперечного увеличения βу равен 

β ,y
y s
y s
′ ′

= =  

при одинаковых величинах переднего и заднего фокусных расстояний  
( f = f' ). 

Коэффициент углового увеличения βа равен 
 

β β .а y
y s s f
s y s f
′

= = =
′ ′ ′                                       

 (4.9) 

При f = f ' из (4.9) следует, что коэффициент углового увеличения  
βа = 1. 

Коэффициент продольного увеличения βz равен 
 

β ,z
s
s
′∆

=
∆                                              

 (4.10) 
 

где Δs' – малое изменение расстояния s' (Δs'<< s'), а Δs – малое изменение 
расстояния s (Δs' << s'). 
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Подставляя в формулу отрезков (4.4) вместо величин s и s' соответ-
ственно s + Δs и s' – Δs', получаем 
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или в виде инварианта 
 

.22 s
sf

s
sf

′
′∆′

=
∆

                                            
(4.11) 

 

Из (4.11) коэффициент продольного увеличения βz равен 
 

2 22

2

β
β .

β
y

z
a

s fs f fs
s f f sf s
′ ′ ′ ′ ∆

= = = = ′′∆  
                           (4.12) 

 

Таким образом, из (4.12) получаем связь коэффициентов увеличения 
βy, βz, βa 

 
2β β β .y z a=  

 

Недостатками рассмотренной модели толстой линзы являются отсут-
ствие в приведенных формулах явных зависимостей передних и задних 
фокусных расстояний от показателя преломления, радиусов кривизны 
сферических поверхностей линзы, от габаритных размеров линзы – диа-
метра, толщины линзы, т. е. от всех важнейших ее характеристик. 

В качестве примера применения полученных формул рассмотрим 
определение фокусного расстояния толстой линзы.  

Чтобы воспользоваться формулами (4.7) для определения фокусных 
расстояний f, f' или расстояний s, s´, необходимо знать расположение 
главных точек Н и Н´ толстой линзы. 

Рассмотрим толстую линзу, находящуюся в воздухе и имеющую фо-
кусные расстояния f = f´. 

На рис. 4.1 расстояние L между предметом и изображением с учетом 
выражений (4.7) равно 
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1
2 β ,

βH y H
y

L s s d f f d′= + + = +  + +
 
 
 

 (4.13)
 

 

где dН – расстояние между главными точками Н и Н´. Отметим, что рас-
стояние dН постоянно и не зависит от положения предмета и изображения. 
Действительно, расстояние между передним и задним фокусами линзы 
постоянно. Переднее и заднее фокусные расстояния, отсчитываемые  
от главных плоскостей линзы, тоже не изменяются, поэтому простран-
ственное расположение главных плоскостей и расстояние dН между ними 
не изменяются.  

Записывая выражение (4.13) для двух разных расстояний L1 и L2 и вы-
читая эти выражения, получаем, что фокусное расстояние f толстой линзы 
можно вычислить по формуле  

 

1 2

1 2
1 2

,1 1β β
β βy y

y y

L Lf −=
− + −

 

 

где L1, L2 – расстояния между предметом и изображением соответственно при 
коэффициентах поперечного увеличения β1y и β2y, как показано на рис. 4.2. 
 

 

Рис. 4.2. Схема установки для определения фокусного расстояния f 
толстой линзы: 1 – источник света; 2 – предмет; 3 – толстая линза; 4 – 

экран 
  

L1 

1 3 2 4 4 

L2 
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5. ПРЕЛОМЛЕНИЕ СВЕТА  
НА СФЕРИЧЕСКОЙ ГРАНИЦЕ ДВУХ ПРОЗРАЧНЫХ СРЕД 

Рассмотрим распространение световой волны через сферическую по-
верхность с радиусом r1, ограничивающую две прозрачные среды с пока-
зателями преломления n1 и n2 (n2 >n1).  

На рис. 5.1 представим схему формирования сферической поверхно-
стью О1Р1 мнимого изображения точечного источника S1 световой волны. 
Из точки S1 (на оптической оси O1z) проведем два луча: первый вдоль оп-
тической оси, а второй – в произвольную точку P1 сферической поверхно-
сти. Угол падения второго луча в точке Р1 обозначим ε1, а угол преломле-
ния ε1' (как показано на рис. 5.1). Продолжая преломленный в точке Р1 луч 
в обратном направлении, определяем на оптической оси точку S1' – мни-
мое изображение точки S1. Апертурные углы отклонения относительно 
оптической оси падающего и преломленного луча в точке Р1 обозначим σ1 
и σ1'. Точка R1 является центром сферической поверхности. 

 

 

Рис. 5.1. Схема формирования изображения  
осевой точки S1 предмета сферической поверхностью 
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1 1 2 1sin ε sin ε '.n n=                                             (5.1) 
 

Из треугольников P1R1S1 и P1R1S1' на рис. 5.1 получаем по теореме 
синусов 

 

 1 1 1

1 1 1 1 1

sin σ sin(π ε ) sin ε ,
r r s r s

−
= =

+ +                                        
(5.2) 

 

1 1 1

1 1 1 1 1

sin σ ' sin(π ε ') sin ε ' .
' 'r r s r s

−
= =

+ +                          (5.3) 

 

Сумма углов в треугольнике P1R1S1' равна 
 

1 1 1 1π σ ' (π σ ) (ε ε ')=  + − + −  
 

или 
 

1 1 1 1σ ' σ ε ' ε .= +  −                                                (5.4) 
 

Формулы (5.2)–(5.4) применимы ко всем точкам сферической поверх-
ности. 

На формулах (5.1)–(5.4) базируется тригонометрический метод расче-
та прохождения лучей света через сферическую границу двух сред. Его 
суть заключается в последовательном вычислении угла падения ε1, угла 
преломления ε1', апертурного угла σ1' и определение координаты точки 
изображения S1'. В этом методе обычно считаются заданными величинами 
радиус поверхности r1, показатели преломления сред n1 и n2, координата s1 
точки предмета, апертурный угол σ1. 

Последовательность расчета прохождения луча через сферическую 
поверхность: 

1) определение угла падения на сферическую поверхность из форму-
лы (5.2) 

 

1
1 1

1
ε arcsin 1 sin σ ;s

r
  

=  +                                                
(5.5) 
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2) определение угла преломления из закона преломления 
 

1 1
1

2

sin εε ' arcsin ;n
n

 
=   

                                              
(5.6) 

 

3) определение апертурного угла σ1' из формулы (5.4) 
 

1 1 1 1σ ' σ ε ' ε ;= + −                                                (5.7) 
 

4) определение координаты точки изображения S1' из формулы (5.3) 
 

1
1 1

1

sin ε '' 1 .
sin σ '

s r
 

= − 
                                                  

(5.8) 

 

Этот алгоритм далее можно применить к последующим сферическим 
поверхностям между средами, расположение которых считается задан-
ным. Так, для линз задают толщины вдоль оптической оси, радиусы кри-
визны поверхностей, показатели преломления и последовательно опреде-
ляют углы εi, εi', σi, σi' и расстояния si, si' для i-й сферической поверхности 
линз (i = 2, 3, 4 …). 

Рассмотрим выражения (5.1)–(5.3) в параксиальной области сфериче-
ской поверхности, то есть при 

 

1
1 1

1
sin σ σ ,h

s
≈ = 1

1 1
1

sin σ ' σ ' ,
'

h
s

≈ = 1 1sin ε ,ε≈ 1 1sin ε ' ε ,≈  

 

где h1 – расстояние от оптической оси до точки Р1 сферической поверхно-
сти (см. рис. 5.1). 

В параксиальной области из формул (5.2), (5.3) получаем углы паде-
ния ε1 и преломления ε1', равные 
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Подставляя (5.9) и (5.10) в закон преломления n1ε1= n2ε1' (в паракси-
альной области сферической поверхности), получаем инвариант Аббе 

 

1 2
1 1 1 1

1 1 1 1 .
'

n n
s r s r

   
+ = +     

                                            
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Аналогичным образом инвариант Аббе записывается для любой по-
следующей сферической поверхности 
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где i – номер сферической поверхности. 
Из инварианта Аббе (5.11) получаем формулу сферической поверхности 
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где 1
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12 D
r

nn
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−
 – оптическая сила сферической поверхности. 

Следствия из формулы (5.12): 

1) при s1 → ∞ расстояние '' 1
12

12
1 f

nn
rns =

−
−=  является задним фокусным 

расстоянием сферической поверхности, знак минус указывает, что рассто-
яние s1' откладывается по другую сторону от поверхности. При s1' → ∞ 

расстояние 1
12

11
1 f

nn
rns =

−
=  является передним фокусным расстоянием сфе-

рической линзы. Переднее фокусное расстояние f1 отличается от заднего 
фокусного расстояния f1', если показатели преломлений n1 и n2 различны. 
При равенстве показателей преломления n1 и n2 граница между средами 
исчезает и фокусные расстояния становятся неопределенными; 

2) оптическая сила связана с передним и задним фокусными расстоя-
ниями соотношением 
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3) при r → ∞ из (5.12) получаем формулу плоской границы двух про-
зрачных сред с показателями преломления n1 и n2 
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При равенстве показателей преломления n1 = n2 из (5.13) следует, что 
s1 = s1', т. е. изображение совпадает с предметом.  

Рассмотрим характеристическую функцию V сферической поверхно-
сти, являющейся границей двух прозрачных сред. Для осевой точки пред-
мета и сопряженной точки изображения характеристическая функция V 
сферической поверхности представляется (в параксиальной области) в виде 
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При равенстве этой характеристической функции V нулю получаем 
формулу сферической границы двух сред, совпадающую с (5.12): 
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По сути формула (5.14) представляет собой инвариант Аббе (5.11).  
Учитывая условие формирования идеального изображения 
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получаем из (5.15), что 
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где 2 1 1

1 1 1 2 1( )o
n r ss

r n s n n
′ =

− −  – расстояние от центра сферической поверхности до 

плоскости изображения, соответствующего условию (5.14). 
Из условий (5.16) следует, что формула (5.14) справедлива для сфери-

ческой поверхности бесконечных размеров (координата точек поверхно-
сти h1 → ∞). При конечном размере сферической поверхности (координата 
h1>>λ) имеет место неопределенность Δs1' продольной координаты поло-
жения изображения осевой точки предмета (вдоль оптической оси сфери-
ческой поверхности), равная 
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Расстояние s1' от центра сферической поверхности до плоскости иде-
ального изображения может быть равно 

 

1 1.os s s= ± ∆′ ′ ′  
 

Для падающей плоской волны (s1 → ∞) величина неопределенности 
фокусного расстояния f1 = r1n2/(n2 –n1) сферической поверхности (вдоль 
оптической оси) равна 
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Величина неопределенности поперечной координаты фокуса задается 
выражением 
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Оценим величины неопределенности Δs1' (5.17) и Δy'o (5.18) при: 
1) λ = 5·10–7м, f1 = 0,5 м и h1 = 0,025 м: 
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2) λ = 5·10–7м, f1 = 0,5 м и h1 = 0,005 м: 
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Получаем, что как и для сферического зеркала, при уменьшении от-
носительного отверстия сферической поверхности на рис. 5.1 в 5 раз не-
определенность продольного положения плоскости изображения увеличи-
вается в 25 раз, а неопределенность поперечного положения – в 5 раз.  

Рассмотрим характеристическую функцию V сферической поверхно-
сти для внеосевой точки предмета в первом приближении 
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При равенстве нулю характеристической функции (5.19) получаем, что 
коэффициент β поперечного увеличения сферической поверхности равен 
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(5.20) 

 

Для формирования идеального изображения внеосевой точки предме-
та сферической поверхностью должны выполняться условия 
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Таким образом, формула (5.20) выполняется для сферических поверх-
ностей при h1 >> s1λ/yo. Из-за конечности радиуса r1 кривизны сфериче-
ской поверхности получаем, что для внеосевой точки предмета имеет ме-
сто неопределенность поперечной координаты изображения этой точки 
предмета, равная  
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Из (5.22) следует, что неопределенность изображения внеосевых то-
чек предмета меньше неопределенности осевой точки предмета. 

Таким образом, учет размеров (краев) сферической поверхности при-
водит к тому, что любая точка изображения предмета имеет конечный 
размер, называемый дифракционным размером точки изображения  
и определяемый формулами (5.18) и (5.22). 
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6. ПРЕЛОМЛЕНИЕ СВЕТА ТОНКОЙ ЛИНЗОЙ 

Рассмотрим вывод формул, в соответствии с которыми линза преоб-
разует предметную световую волну в волну, формирующую изображение 
предмета. В формулах учтем показатели преломления линзы и окружаю-
щей ее среды, радиусы кривизны сферических поверхностей линзы, тол-
щину линзы. 

На рис. 6.1 представлена двояковыпуклая линза с показателем пре-
ломления n2 и с радиусами кривизны r1 и r2 соответственно первой и вто-
рой поверхностей линзы. Предполагается, что по одну сторону линзы 
находится прозрачная (нерассеивающая) среда с показателем преломления 
n1, а по другую сторону – прозрачная (нерассеивающая) среда с показате-
лем преломления n3. Мы ограничимся описанием распространения свето-
вых волн в параксиальной области линзы.  

 

 

Рис. 6.1. Схема формирования изображения  
осевой точки S1 предмета линзой 

 
 
Рассмотрим осевую точку предмета S1, являющуюся источником сфе-

рической световой волны. Направим из нее два луча света: первый луч – 
вдоль оптической оси (он пройдет через линзу без преломления на ее по-
верхностях), второй – в произвольную точку Р1 передней поверхности 
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линзы. Предположим, что второй луч, преломившись на передней (в точке 
Р1) и на задней (в точке Р2) поверхностях линзы, пересекает оптическую 
ось в точке S2'. Точка S2' является действительным изображением осевой 
точки S1 предмета. Расстояние от точки S1 до первой поверхности линзы 
обозначим s1, расстояние от второй поверхности линзы до точки изобра-
жения S1' обозначим s2. Толщину линзы обозначим d1.  

Запишем инварианты Аббе для передней и задней поверхностей линзы 
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В выражениях (6.1) и (6.2) в знаках «плюс-минус» верхние знаки со-
ответствуют расходящейся, а нижние – сходящейся световой волне, про-
шедшей переднюю поверхность линзы. Из выражений (6.1) и (6.2) форму-
лы передней и задней поверхностей линзы представляются соответствен-
но в виде 
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Для тонкой линзы d1 = 0, поэтому расстояния s1' и s2 равны. В этом 
случае, складывая правые и левые части выражений (6.3) и (6.4), получаем 
формулу тонкой линзы 

 

,
' 2

32

1

12

2

3

1

1

r
nn

r
nn

s
n

s
n −

+
−

=+
                                

(6.5) 

 

где D
r

nn
r

nn
=

−
+

−

2

32

1

12  – оптическая сила тонкой линзы. 
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Следствия из формулы (6.5). 
1. При s2' → ∞ расстояние s1 равно 
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и является передним фокусным расстоянием. 
Аналогичным образом при s1 → ∞ расстояние s2', равное 
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является задним фокусным расстоянием. 
2. Поделив в формуле (6.5) правую и левую части на оптическую си-

лу D, получаем формулу отрезков 
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3. При n1 = n3 переднее и заднее фокусные расстояния одинаковы f = f'. 
4. При n1 = n3 формула тонкой линзы записывается в виде 
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где f – фокусное расстояние тонкой линзы. 
5. Оптическая сила D тонкой линзы равна 
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6. Правило сложения оптических сил поверхностей тонкой линзы за-
писывается в виде 

 

D = D1 + D2, 
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где D – оптическая сила тонкой линзы, D1 – оптическая сила первой (пе-
редней) поверхности линзы, D2 – оптическая сила второй (задней) поверх-
ности линзы. 

7. При r1=r2=r линза представляет собой искривленную тонкую пло-
скопараллельную пластину, называемую мениском с равными радиусами. 

Если пренебречь толщиной такого мениска, то его фокусное расстоя-
ние f → ∞, а оптическая сила 
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При учете толщины оптическая сила мениска с равными радиусами 
отлична от нуля и равна 
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где d1 – толщина мениска. 

Вывод формулы толстой линзы 

Складывая (6.3) и (6.4), получаем формулу, учитывающую толщину 
d1 линзы 
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Рассмотрим частные случаи формул (6.3) и (6.4). 
При s1 → ∞ расстояние s1' выражается через показатели преломления 

n2, n1 и радиус первой поверхности r1 в виде 
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При s2' → ∞ расстояние s2 равно 
32

22
2 nn

rns
−

±= . Подставляя выражения 

для расстояний s1' и s2 в (6.6), получаем формулу линзы с учетом ее тол-
щины d1 в виде 

 

3 2 3 2 1 2 3 11 2 1

1 2 1 2 2 1 2

( )( ) .n n n n n n n dn n n
s s r r n r r

− − −−
+ = + −

′                    
(6.7) 

 

Следствия из формулы (6.7): 
1) при d1 = 0 формула (6.7) переходит в формулу тонкой линзы; 
2) оптическая сила D линзы зависит линейно от толщины d1 и отлича-

ется от оптической силы DT тонкой линзы дополнительным слагаемым ΔD 
(в квадратных скобках) 
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3) при учете толщины d1 линзы фокусные расстояния f и f ' изменяются на 
разные величины; 
4) отношение слагаемого ΔD к оптической силе DT тонкой линзы равно 
при n1 = n3 
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5) линза становится телескопической (D = 0) при толщине 
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где D1, D2, f1, f2 – соответственно оптические силы и фокусные расстояния 
первой (передней) и второй (задней) поверхностей линзы. 
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Оптическая система из двух тонких линз 

Рассмотрим оптическую систему из двух тонких линз с фокусными 
расстояниями f1 и f2 (рис. 6.2), находящимися в однородной прозрачной 
среде на расстоянии l друг от друга. 

Запишем формулы тонких линз 
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Рис. 6.2. Система из двух тонких линз, разнесенных на расстояние l 
 
 
Из суммы (6.8) и (6.9) следует, что 
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так как расстояние 
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Учитывая, что при s1 → ∞ величина
1 1

1 1
s f

=
′ , а при s2' → ∞ величина
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=− , получаем из (6.10) формулу для системы из двух тонких линз 
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Следствия из формулы (6.11): 
1) оптическая сила системы из двух тонких линз равна 
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2) правило сложения оптических сил тонких линз выполняется при  
l = 0, т. е. когда можно пренебречь расстоянием l между линзами; 

3) система из двух тонких линз с противоположными оптическими 
силами D1= –D2 при учете расстояния между ними обладает положитель-
ной оптической силой 
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4) система из двух тонких линз становится телескопической (D = 0) при 
расстоянии между линзами  

 

.11
21

21

ff
DD

l +=+=  

 

Полученные формулы применимы и для поглощающих линз. Систе-
мы из двух поглощающих линз используются для получения требуемого 
распределения интенсивности по сечению светового пучка на заданном 
расстоянии от линз. 

Примеры применения линз в оптических системах подробно рассмат-
риваются в курсах «Теория оптических приборов» и «Прикладная оптика».  
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7. ПРЕОБРАЗОВАНИЕ СВЕТОВОЙ ВОЛНЫ  
ДИФРАКЦИОННЫМИ ЛИНЗАМИ 

Теория зонной пластины Френеля 

Зонной пластиной Френеля называется прозрачная пластина (пленка), 
на поверхности которой нанесены чередующиеся темные и светлые поло-
сы или кольца (рис. 7.1, а, б).  

 
  

 

 

 

    

а)                                                   б) 

Рис. 7.1. Зонная пластина Френеля: а) для цилиндрической волны;  
б) для сферической волны 

 
 
Рассмотрим подробнее зонную пластину Френеля для сферической 

волны. В центре этой зонной пластины (рис. 7.1, б) находится светлый 
(или темный) круг, называемый первой зоной Френеля. Окружающее его 
темное (или светлое) кольцо называется второй зоной Френеля. Следую-
щее светлое (или темное) кольцо является третьей зоной и т. д. Если пер-
вая зона Френеля является светлой (темной), тогда все нечетные зоны – 
светлые (темные), а четные зоны – темные (светлые).  

Количество m зон Френеля может быть найдено по формуле 
 

2 2 2 22 ( ),
λ r m o m r o

o
m z r z r z z= + + + − −

                         
    (7.1) 
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где zr, zo – соответственно расчетные расстояния от зонной пластины до 
плоскостей предмета и изображения; rm – радиус m-й зоны Френеля; λo – 
расчетная длина волны. При разложении по величинам малости rm/zr << 1, 
rm/zo << 1 получаем из (7.1) 

 
2 1 1 ,

λ
m

o r o

rm
z z

 
≈ + 

                                         
    (7.2) 

 

Учитывая только первый порядок разложения (7.2), в параксиальной 
области зонной пластины радиусы rm зон Френеля могут быть определены 
из формулы 

 

λ ,o r o
m

r o

m z zr
z z

=
+                                        

    (7.3) 
 

где m – номер зоны Френеля.  
Используя формулу (7.3), получаем, что в параксиальной области ши-

рина Δrm зон Френеля с большими номерами (m >> 10) обратно пропорци-

ональна квадратному корню из номера зоны m  
 

1
1

λ ( 1) ,
2

o r o
m m m

r o

z z rr r r m m
z z m − ∆ = − ≈ − − ≈

+                     
    (7.4) 

 

где r1 – радиус первой зоны Френеля.  
Из формулы (7.3) получаем, что в параксиальной области площади S 

зон Френеля одинаковы и равны 
 

2 2
1 1

πλπ π .o r o
m mm m

r o

z zS S S r r
z z − −= − = − ≈

+  

 

Характеристическая функция зонной пластины Френеля может быть 
представлена в виде  

 

2 2 2 2 0,5 λ ,c m i m c i сV z r z r z z km= + + + − − −                        (7.5) 
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где zc, zi – соответственно расстояния от зонной пластины до плоскостей 
предмета и изображения при использовании зонной пластины; rm – радиус 
m-й зоны Френеля; k – используемый порядок дифракции; λс – используе-
мая длина волны. 

Разлагая характеристическую функцию (7.5) по величинам малости 
rm/zc << 1, rm/zi << 1 и приравнивая нулю первый порядок разложения, по-
лучаем 

 

,111

kiс fzz
=+

                     
                      (7.6) 

 

где fk – фокусное расстояние зонной пластины Френеля в k-м порядке ди-
фракции 

 

λ .
λ ( )

o r o
k

c r o

z zf
k z z

=
+                  

                      (7.7)
 

 

Полученные формулы (7.6) и (7.7) связывают между собой расчетные 
и реальные характеристики зонной пластины и подобны формулам тонкой 
собирающей и рассеивающей линз, так как порядок дифракции k может 
быть положительным и отрицательным. Поэтому зонная пластина облада-
ет способностью одновременно фокусировать и рассеивать падающую 
световую волну в разные порядки дифракции, а также частично пропус-
кать и отражать эту световую волну. Зонная пластина обладает множе-
ством мнимых и действительных фокусов, фокусное расстояние fk до ко-
торых может быть определено по формуле (7.7).  

Таким образом, зонная пластина Френеля может быть использована 
для получения действительных и мнимых изображений подобно линзе. 
Это особенно важно для тех областей электромагнитного спектра, где из-
за сильного поглощения практически невозможно использование рефрак-
ционных оптических элементов, например в дальней вакуумной ультра-
фиолетовой и мягкой рентгеновской областях спектра. Именно использо-
вание микроскопических зонных пластин Френеля в качестве линз позво-
лило разработать первые рентгеновские микроскопы и получить увели-
ченные рентгеновские изображения микрообъектов. 
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Формулы коэффициентов поперечного и продольного увеличения 
зонной пластины Френеля в параксиальной области совпадают с форму-
лами увеличения тонкой линзы: 

 

поперβ ,i

c

z
z

=  

 
2

2
продол поперβ β .i

c

z
z

 
= =  

 
 

 

Из формул (7.3), (7.7) следует взаимосвязь между фокусным расстоянием 
fk, радиусом первой зоны Френеля r1 и шириной Δrm крайних зон Френеля 

 
22

1 4 .
λ λ

m
k

c c

m rrf
k k

∆
= =

                                                 
(7.8) 

 

Разрешение δr зонной пластины Френеля может быть определено из 
критерия Релея с учетом (7.8) и равно 

 

λ1,22λ λ 2δ ,
2 2 λ 2 2

c mc k c k m m

m c m

ff f r m rr
r m f m mk k

∆ ∆
= ≈ = = =

   
             (7.9)

 
 

т. е. разрешение δr определяется шириной Δrm минимальной крайней зоны 
Френеля и порядком k-дифракции. 

Дифракционная эффективность амплитудной зонной пластины Фре-
неля составляет:  

– в первом порядке дифракции – 10,1 %; 
– во втором порядке дифракции – 1,1 %; 
– в третьем порядке дифракции – 0,6 %. 

В нулевом порядке амплитудная зонная пластина Френеля имеет про-
пускание – 25 %. 

Преобразование световой волны киноформной линзой 

Киноформная линза – дифракционный оптический элемент, имеющий 
микрорельефную поверхность и преобразовывающий подобно линзе па-
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дающую световую волну. Например, киноформными линзами являются 
рельефная зонная пластина Френеля и зонная пластина Слюсарева (рис. 
7.2) – дифракционный аналог линзы Френеля. Разработанный в 1969 г.  
в компании IBM киноформ представлял собой внеосевой дифракционный 
элемент, обладающий способностью направлять в один порядок практиче-
ски все падающее на него монохроматическое излучение. Позже фокуси-
рующие дифракционные оптические элементы (фокусаторы), в том числе 
фокусирующие световое излучение в указанных пространственных обла-
стях с заданными распределениями интенсивности, разрабатывались  
В. А. Сойфером с сотрудниками (Институт систем обработки изображе-
ний РАН, Самара). 

 

 

Рис. 7.2. Зонная пластина Слюсарева 
 
 
В. П. Коронкевичем с сотрудниками (Институт автоматики и элек-

трометрии СО РАН, Новосибирск) был создан фотопостроитель «Ви-
деодиск», обеспечивший возможность создания киноформных линз диа-
метром до 300 мм. Были разработаны технологические процессы изготов-
ления киноформных линз на основе стандартных операций фотолитогра-
фии. Разработка и производство подобных установок было освоено в Кон-
структорско-технологическом институте научного приборостроения (КТИ 
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rm 
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НП СО РАН, Новосибирск). На рис. 7.3 представлен лазерный генератор 
изображений серии CLWS-300 производства КТИ НП СО РАН. 

 

 

Рис. 7.3. Лазерный генератор изображений серии CLWS-300 
 
 
В отличие от тонкой зонной пластины Френеля при расчете толщины 

zm киноформной линзы, представленной на рис. 7.2, требуется учитывать 
форму рельефа поверхности в пределах каждой m-й зоны  

 

zm = hm – rm
2/Rm,                                          (7.10) 

 

где Rm – радиус кривизны поверхности m-й зоны; hm – наибольшая толщи-
на m-й зоны. Кроме этого, необходимо учитывать показатель преломления 
n материала киноформной линзы.  

Характеристическая функция киноформной линзы (находящейся в 
воздухе) представляется в виде 

 

2 2 2 2 2 2 2 2 2( ) ( ( ) )
( ( 1) ) λ ,

с m m i m m i m i m

c i i m с

V z z r n nz z r n z r z r
z n nz z mp
= − + + + + − + + + −

− + − + −        
(7.11) 

 

где zс, zi – соответственно расстояния от поверхностей киноформной лин-
зы до плоскости предмета и до плоскости изображения; rm, zm – соответ-
ственно радиус и толщина m-й зоны киноформной линзы; n – показатель 
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преломления материала киноформной линзы; λс – используемая рабочая 
длина волны; рm – количество длин волн. 

Количество m зон в (7.11) может быть вычислено из формулы 
 

2 2 2 2 2 2 2 2 21 ( ( ) ( ( ) )
λ

( ( 1) )),

r m m o m m o m o m
m o

r o o

m z z r n nz z r n z r z r
p

z n nz z

= − + + + + − + + + −

− + − +
(7.12) 

 

где zr, zo – соответственно расчетные расстояния от киноформной линзы 
до плоскостей предмета и изображения; rm, zm – соответственно радиус и 
толщина m-й зоны киноформной линзы; λo – расчетная длина волны; рm – 
заданное количество длин волн. 

Из первого порядка разложения характеристической функции (7.11) с 
учетом толщины (7.10) в параксиальной области киноформной линзы ра-
диус m-й зоны может быть найден из формулы 

 

2 λ .1 1 1
m с

m

c i m

mрr n
z z R

≈
−

+ −
                                       

(7.13) 

 

Получаем, что радиусы зон киноформной линзы отличаются от ради-
усов зон Френеля. При рm = 0,5 и Rm → ∞ выражение (7.10) совпадает с 
выражением (7.3) радиуса m-й зоны пластины Френеля.  

Таким образом, в отличие от зон Френеля, радиус m-й зоны кино-
формной линзы зависит от формы рельефа поверхности зон и показателя 
преломления. Значения максимальных толщин hm могут быть выбраны из 
условия максимальной или заданной дифракционной эффективности ки-
ноформной линзы. 

Из формулы (7.13) получаем, что в параксиальной области ширина 
зон Δrm киноформной линзы с большими номерами (m >> 10) обратно 
пропорциональна квадратному корню из номера зоны m 

 

1
1 .

2m m m
rr r r
m − ∆ = − ≈

            
                      (7.14) 
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Разлагая характеристическую функцию (7.8) с учетом (7.9) по вели-
чинам малости (rm/zj << 1, zm/zj << 1, где j = c, i, r, o) и приравнивая нулю 
первый порядок разложения, получаем формулу киноформной линзы 

 

,111
m

miс

D
fzz

==+                                       (7.15) 
 

где fm, Dm – соответственно фокусное расстояние и оптическая сила кино-
формной линзы 

 

λ λ1 1 1 1(1 ) ( ).
λ λ

c c
m

m m o o r o

nD
f R z z

−
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                      (7.16)

 
 

Из формул (7.6) и (7.15) следует, что преобразования световой волны 
(в каждом порядке дифракции) зонной пластиной Френеля и киноформ-
ной линзой совпадают с преобразованиями тонкой линзы.  

При совпадении используемой λc и расчетной λo длин световой вол-
ны фокусное расстояние fm киноформной линзы совпадает с расчетным 
расстоянием 

 

λ .
λ ( )

o r o
m

c r o

z zf
z z

=
+  

 

Формулы коэффициентов поперечного и продольного увеличения 
киноформной линзы в параксиальной области совпадают с формулами 
тонкой линзы.  

Дифракционная эффективность киноформной линзы может достигать 
ста процентов. Как правило, киноформные линзы рассчитываются для 
первого порядка дифракции. Разрешение киноформной линзы в первом 
порядке дифракции может быть определено из (7.9) и примерно равно 
ширине Δrm минимальной крайней зоны.  

Следует отметить, что киноформные линзы могут быть как фокусиру-
ющими, так и рассеивающими световую волну. Если на рельефную поверх-
ность киноформной линзы нанести отражающий тонкий слой (например, 
алюминия), то рельефная поверхность станет рассеивать или фокусировать 
световую волну подобно сферическому зеркалу. В настоящее время разраба-
тываются различные типы фокусирующих и рассеивающих киноформных 
линз, которые, несомненно, найдут широкое практическое применение.   
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8. ПРЕОБРАЗОВАНИЕ  
СВЕТОВОЙ ВОЛНЫ ГОЛОГРАММНОЙ ЛИНЗОЙ 

Голография, открытая Д. Габором в 1948 г., превратилась за время 
своего развития в обширный раздел физики волн, в котором исследуются 
закономерности способов формирования интерференционной картины за-
данных волн, с последующим изучением характеристик воспроизведен-
ных волн в результате дифракции на этой интерференционной картине. 
Голограмма представляет собой трехмерную или двумерную интерферен-
ционную картину, сформированную соответственно в объеме или в тон-
ком слое среды в виде локальных модуляций коэффициента поглощения, 
показателя преломления или толщины слоя. По способам изготовления 
голограммы подразделяются на интерференционные и синтезированные. 
Интерференционные голограммы изготавливаются путем регистрации ин-
терференционной картины когерентных световых волн лазерного излуче-
ния в объеме или тонком слое светочувствительного материала. Интерфе-
ренционная структура синтезированных голограмм рассчитывается на 
компьютере и формируется в объеме или на поверхности материала на 
специализированном прецизионном оборудовании.  

Исторически первые интерференционные голограммы регистрирова-
лись на фотопластинках, поэтому экспонированную и проявленную фото-
пластинку также называют голограммой. Такая голограмма имеет только 
два порядка дифракции (положительный и отрицательный). Светочув-
ствительный материал принято называть голографической средой.  

Известно, что методы расчета голограммных оптических элементов, 
выполняющих функции оптических внеосевых и осевых линз для коге-
рентного света, основаны на волновом представлении света. С использо-
ванием методов, подобных методу характеристической функции, были де-
тально исследованы свойства осевого голограммного элемента (рис. 8.1) – 
голограммной линзы – и показано, что она обладает свойством формиро-
вать изображение подобно тонкой рефракционной линзе. 
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Рис. 8.1. Голограммная линза 
 
 
Схема записи такой голограммной линзы представлена на рис. 8.2,  

а схема использования – на рис. 8.3.  
Характеристическая функция голограммной линзы может быть запи-

сана через зарегистрированное пространственное распределение количе-
ства периодов интерференционных полос m (х, у) в виде  

 

( , ) ( ) ( , )λ ,c c i i cV x y l d l d km x y= − + − −                          (8.1) 
 

где lc, li – соответственно расстояния от произвольной точки М(х, у) вбли-
зи центра голограммной линзы до рассматриваемой точки Pc(xc, yc, zc) 
предмета и до сопряженной точки Pi(xi, yi, zi) изображения; dc, di – соответ-
ственно расстояния от центра О голограммной линзы до выбранной точки 
Pc(xc, yc, zc) предмета и до сопряженной точки Pi(xi, yi, zi) изображения; k – 
порядок дифракции; λc – длина монохроматической световой волны при 
использовании линзы. 

Пространственное распределение количества интерференционных 
полос m(х, у) выражается через разность оптических путей от положений 
источников при записи голограммного элемента как 

 

1( , ) ( ).
λ r r o o

o
m x y l z l z= − + −

           
                      (8.2) 

где lr, lo – соответственно расстояния от той же произвольной точки М(x, 
y) голограммной линзы вблизи центра до точечных источников Pr(0, 0, zr); 
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Po(0, 0, zo) опорной и объектной волн; zr, zo – соответственно расстояния от 
центра О голограммной линзы до источников Pr(0, 0, zr), Po(0, 0, zo) опор-
ной и объектной волн; λo – длина волны лазера при записи. 

 

 

Рис. 8.2. Схема записи голограммной линзы 
 

 

Рис. 8.3. Cхема использования голограммной линзы 
 
 
Рассмотрим случай, когда поперечные размеры (диаметр) голограмм-

ной линзы больше или сопоставимы с размерами предмета и изображения, 
но намного меньше расстояний до предмета и изображения (xc/zc, yc/zc, 
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xi/zi, yi/zi ≤ x/zc, y/zc, x/zi, y/zi << 1). В этом случае расстояния dc, lс  
(см. рис. 8.3) могут быть разложены в ряд по величинам малости xс/zс, yс/zс, 
x/zс, y/zс. Разлагая аналогичным образом расстояния di, li, lr, lo, указанные 
на рис. 8.2 и 8.3, и подставляя полученные выражения в (8.1) и (8.2), полу-
чаем в первых порядках разложения характеристическую функцию V(x, y) 
голограммной линзы в виде  
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где коэффициенты B10, B01 
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коэффициенты F20, F02 
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Из условия равенства нулю коэффициентов B10, B01 получаются вы-
ражения, связывающие соответствующие координаты точек предмета  
и изображения в параксиальной области голограммной линзы 

 

,c
c

i
i x

z
zx =

                         
                      (8.3) 
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i
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z
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А из условия равенства нулю коэффициента F20 следует, что длина 
волны λo при записи, длина волны λc при восстановлении и положения zr, 
zo, zc, zi источников опорной и объектной волн (на оптической оси) на ста-
дии записи и использования связаны соотношением, называемым форму-
лой тонкой голограммы: 
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                      (8.4) 

 

где k – порядок дифракции; D, f – соответственно оптическая сила и фо-
кусное расстояние голограммной линзы. 

Фокусное расстояние f голограммной линзы равно  
 

λ .
λ
o o r

c o r

z zf
k z z

 
=  +                   

                        (8.5) 
 

Из формулы (8.5) следуют известные отличительные особенности фо-
кусного расстояния голограммной линзы: 

– обратная пропорциональность рабочей длине волны λc; 
– обратная пропорциональность порядку дифракции k; 
– прямая пропорциональность длине волны записи λo; 
– зависимость от расстояний zr, zo до точечных источников опорной  

и объектной волн, подобная формуле тонкой линзы; 
– наличие фокусного расстояния, равного бесконечности (при k = 0)  

и соответствующего нулевому порядку дифракции. 
Наличие положительных и отрицательных порядков дифракции ука-

зывает, что голограммная линза обладает одновременно свойствами по-
ложительной и отрицательной линз, причем передний и задний фокусы 
положительной и отрицательной линз, соответствующих одинаковому по 
модулю порядку дифракции, пространственно совпадают. При выполне-
нии условия (8.4) голограммная линза формирует в каждом порядке ди-
фракции изображение подобно тонкой рефракционной линзе. Эта анало-
гия позволяет рассчитывать голограммные линзы с помощью компьютер-
ных программ расчета оптических систем. 

Но в отличие от рефракционной линзы изображение, сформированное 
голограммной линзой, обладает рядом отличительных особенностей, 
например: 

– изображение формируется во всех положительных и отрицательных 
порядках дифракции одновременно; 
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– контраст изображения в каждом порядке дифракции снижается из-
за наложения на него расплывчатых изображений других порядков; 

– изображение имеет фон, образуемый нулевым порядком дифракции 
и рассеянными волнами, что также снижает контраст изображения; 

– изображение имеет пятнистую структуру – спеклы. 
Указанные особенности являются недостатками голограммной линзы. 

Из формулы (8.4) следует зависимость положения точки изображения 
(расстояния zi) от рабочей длины волны λс, приводящая к сильной хрома-
тической аберрации положения.  

Коэффициенты линейного (поперечного) увеличения βх и βу голо-
граммной линзы соответственно в сагиттальной и меридиональной плос-
костях равны 
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где (х1c, у1c), (х2c, у2c) – координаты двух близких точек в плоскости пред-
мета; (х1i, у1i), (х2i, у2i) – координаты сопряженных (к точкам предмета) то-
чек в плоскости изображения. 

Коэффициент продольного увеличения βz голограммной линзы равен 
 

2
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где z1с, z2с – координаты вдоль оптической оси двух точек предмета, уда-
ленных на разное расстояние от центра голограммной линзы; z1i, z2i – ко-
ординаты вдоль оптической оси сопряженных точек изображения. 

Таким образом, формулы коэффициентов продольного и поперечного 
увеличения голограммной линзы совпадают с соответствующими коэф-
фициентами увеличения тонкой рефракционной линзы. Но зависимость от 
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рабочей длины волны λc расстояния zi от центра голограммной линзы до 
изображения является причиной возникновения хроматических аберраций 
положения и увеличения.  

Следует отметить, что представленные формулы для расчета изобра-
жающих свойств и характеристик голограммной линзы справедливы и для 
цилиндрической голограммной линзы, регистрируемой опорной и объект-
ной цилиндрическими волнами. 
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9. ХРОМАТИЧЕСКИЕ АБЕРРАЦИИ  
СВЕТОВОЙ ВОЛНЫ, ВНОСИМЫЕ ЛИНЗАМИ 

Рассмотрим хроматические аберрации (искажения) в световой волне, 
прошедшей рефракционную линзу (оптическую систему) и формирующей 
изображение предмета. Причиной возникновения хроматических аберра-
ций в прошедшей линзу световой волне является зависимость показателя 
преломления n линзы от длины волны света. 

Для находящейся в воздухе собирающей тонкой линзы фокусное рас-
стояние f равно 

 

,
))(1( 21

21

rrn
rrf

+−
=  

 

где r1 и r2 – радиусы кривизны поверхностей линзы; n – показатель пре-
ломления линзы. Так как показатель преломления n линзы зависит от дли-
ны волны света, то при изменении на величину Δλ длины волны света 
имеет место изменение фокусного расстояния f линзы на величину 

 

λλ λ.
λ 1

nfff
n

∂
∂ ∂∆ = ∆ = − ∆
∂ −                                    (9.1)

 
 

Это изменение фокусного расстояния линзы приводит к смещению Δs' 
положения плоскости изображения на величину 

 
2

2 .ss f
f
′

∆ ′ = ∆
                                              

(9.2) 

 

Смещение Δs' положения точки изображения вдоль оптической оси 
при изменении длины волны света называется хроматической аберрацией 
положения. 

Формула (9.2) получается из формулы отрезков 
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при подстановке вместо фокусного расстояния f величины f + Δf и вместо 
s’ величины s’ + Δs' (при этом должны выполняться условия Δs' << s',  
Δf << f). Расстояние s не зависит от длины волны света s = const.  

Радиус получившегося круглого пятна (поперечная хроматическая 
аберрация осевой точки изображения) равен 
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где y – координата точки на линзе. 
Наряду со смещением Δs' изображения точки вдоль оптической оси 

имеет место и смещение Δyo' точки изображения поперек оптической оси 
(хроматическая аберрация увеличения), как показано на рис. 9.1.  

 

 

Рис. 9.1. Хроматическая аберрация положения Δs'  
и увеличения Δyo' тонкой линзы 

 
 
Величина хроматической аберрации увеличения равна 
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Рассмотрим коэффициент поперечного увеличения  
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При изменении длины волны света на величину Δλ коэффициент по-
перечного увеличения β изменяется на величину 
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Таким образом, величины хроматических аберраций положения  
и увеличения зависят от изменения Δf фокусного расстояния линзы. Фор-
мулы (9.1)–(9.5) применимы и для оптических систем из тонких линз. 

Если рассчитать линзу, у которой фокусное расстояние на двух раз-
ных длинах волн одинаково, то хроматические аберрации будут исправле-
ны на этих длинах волн Δf = 0. Такая линза называется ахроматической. 

Условия ахроматизации линзы могут быть записаны в виде  
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λ
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где D – оптическая сила линзы. 
В качестве примера рассмотрим ахроматизацию тонкой линзы (тол-

щина линзы d = 0), тогда  
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Для тонкой линзы получаем, что ахроматизация линзы могла бы 
иметь место, если бы показатель преломления линзы не изменялся от дли-

ны волны 0
λ
n∂

=
∂

. Но так как для известных стекол 0
λ
n∂

≠
∂ , получаем, что 

тонкая линза обладает хроматическими аберрациями положения и увели-
чения из-за зависимости показателя преломления от длины волны света. Ес-
ли в будущем будут созданы оптические материалы с дисперсией показателя 
преломления, близкой к нулю в рабочем спектральном диапазоне, то это 
позволит изготавливать тонкие линзы без хроматических аберраций. 
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Рассмотрим толстую менисковую линзу, у которой оптическая сила D 
при толщине линзы d << r1, r2 равна  
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Записывая условие ахроматизма (9.6) для (9.7), получаем 
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При заданных радиусах кривизны линзы r1 и r2 (r1 больше r2) из (9.8) 
толщина d ахроматической линзы равна 
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Таким образом, существует менисковая линза, называемая мениском 
Максутова, с исправленной хроматической аберрацией. Толщина этой 
линзы задается выражением (9.9). Подставляя (9.9) в (9.7), получаем фо-
кусное расстояние f мениска Максутова, равное 
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    (9.10) 

Ахроматизация двухлинзовой оптической системы 

Оптическая сила D находящейся в воздухе системы из двух тонких 
линз может быть представлена в виде 

 

1 2 1 2 ,D D D lD D= + −                                        (9.11) 
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где D1 и D2 – оптические силы тонких линз; l – расстояние между линзами. 
Формула (9.11) получается при сложении формул отрезков (9.3) двух тон-
ких линз, при этом расстояние l между линзами равно сумме длин заднего 
отрезка s1' первой линзы и переднего отрезка s2 второй линзы. Также 
предполагается, что длина переднего отрезка s1 >> s1' и длина заднего от-
резка s2' >> s2. 

Рассмотрим ахроматизацию двух склеенных линз (l = 0), изготовлен-
ных из разных сортов стекол. Из условия ахроматизации (9.6) для двух 
линз получаем 
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где n1 и n2 – показатели преломления тонких линз. Так как показатели пре-
ломления n1 и n2 линз больше единицы, а производные показателей пре-
ломления n1 и n2 по длине волны λ отрицательные, получаем, что оптиче-
ские силы D1 и D2 склеенных линз имеют противоположные знаки 
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Таким образом, компенсация хроматической аберрации первого по-
рядка имеет место для склеенных положительной и отрицательной линз, с 
разными показателями преломления, с разными дисперсиями показателей 
преломления линз. Склеенную ахроматическую линзу можно представить 
в виде двух склеенных киноформных (дифракционных) линз. Равенство 
(9.13) должно выполняться для киноформной (дифракционной) линзы ло-
кально (в каждой зоне). 

Рассмотрим ахроматизацию разнесенных на расстояние l двух линз, 
изготовленных из одного и того же стекла. Из условия (9.6) ахроматиза-
ции этих двух линз получаем 
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где n – показатель преломления тонких линз; D1 и D2 – оптические силы 
тонких линз.  

Из условия (9.6) можно получить для двух разнесенных на расстояние 
l дифракционных линз (зонной пластины Френеля, киноформной линзы, 
голограммной линзы) 
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где D1 и D2 – оптические силы дифракционных линз на длине волны λс.  
Выполняя сокращения в (9.14) и (9.15), получаем, что ахроматизация 

двух линз, как рефракционных, так и дифракционных, возможна при рас-
стоянии l между линзами, равном 
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где f1 и f2 – фокусные расстояния линз.  
При выполнении ахроматизации двух разнесенных голограммных 

(дифракционных) линз требуется выполнение дополнительного условия 
для каждой линзы – условия выбора оптимальной длины волны λо записи 
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где k – порядок дифракции; mr – коэффициент масштабирования линзы;  
λс – длина волны света при использовании линзы; βо – коэффициент уве-
личения на длине волны λо записи (в схеме записи). В настоящее время 
интенсивно выполняются теоретические и практические работы по ахро-
матизации дифракционных и голограммных линз. 

После устранения хроматизма положения и увеличения для двух длин 
волн между этими точками наблюдается остаточный хроматизм, что придает 
изображению незначительную остаточную радужную окраску по краям.  
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10. МОНОХРОМАТИЧЕСКИЕ АБЕРРАЦИИ  
СВЕТОВОЙ ВОЛНЫ, ВНОСИМЫЕ ЛИНЗАМИ 

Аберрация оптического элемента (сферической поверхности) – это 
некоторое искажение в изображении предмета, сформированном световой 
волной, прошедшей через оптический элемент или отраженной от оптиче-
ского элемента. Волновая аберрация – это отличие фронта световой вол-
ны, формирующей реальное изображение, от фронта световой волны, 
формирующей идеальное изображение.  

В зависимости от ширины рабочего спектрального диапазона опти-
ческого элемента аберрации подразделяют на хроматические и моно-
хроматические. Монохроматические аберрации – это аберрации на од-
ной рабочей длине волны, например на длине волны лазерного источни-
ка.  

Рассмотрим монохроматические аберрации третьего порядка. 

Осевая сферическая аберрация 

Сферическая аберрация линзы – это искаженное изображение осевой 
точки предмета в виде кружка (в плоскости изображения). Световая волна, 
например, отраженная или преломленная параксиальной областью сфери-
ческих поверхностей элементов, формирует стигматическое изображение 
осевой точки предмета в гауссовой плоскости изображения.  

Сферическая аберрация возникает из-за того, что узкие пучки света, 
падающие на сферическую отражающую или преломляющую сфериче-
скую поверхность в непараксиальной области, фокусируются в разные 
точки вдоль оптический оси этих поверхностей. На рисунке 10.1 на 
примере линзы показано образование сферической аберрации из-за пре-
ломления световой волны на поверхностях линзы. 



68 

 

Рис. 10.1. Формирование сферической аберрации линзы 
 
 
В гауссовой плоскости изображения F образуется круглое пятно рас-

сеяния этих пучков света вместо идеальной точки. При количественном 
описании сферической аберрации указывают следующие величины: про-
дольная величина сферической аберрации δs, поперечная величина сфери-
ческой аберрации δr, также сферическая аберрация в волновом виде как 
разница между реальным волновым фронтом (показан на рис. 10.1 сплош-
ной линией) и сферическим волновым фронтом идеальной точки изобра-
жения в гауссовой плоскости (сферический фронт показан на рис. 10.1 
пунктирной линией). Эта разница вдоль радиуса сферического фронта и 
представляет собой сферическую аберрацию в волновом виде, указывае-
мую, как правило, в длинах световой волны. 

Отметим, что в рабочих схемах рассмотренных выше асферических 
отражающих поверхностей и предложенных Декартом рефракционных 
линз сферическая аберрация отсутствует в изображении осевой точки 
предмета. Если же схема использования оптических элементов с асфери-
ческими поверхностями отличается от рабочей рассчитанной схемы, то 
сферическая аберрация имеет место (рис. 10.2). 

 

δr 

δs 

F 
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а) 

б)  
б) 

Рис. 10.2. Графики зависимости сферической аберрации сферического 
(сплошная линия) и параболического (пунктирная линия) зеркал  
от радиальной координаты: а) величина продольной сферической 

аберрации; б) радиус поперечной сферической аберрации. Зеркала имеют 
одинаковые фокусные расстояния 0,5 м и одинаковый световой диаметр 

0,4 м. Осевая точка предмета удалена на расстояние 10 м 
 

Полевая аберрация «кома» 

Аберрация «кома» – это искаженное изображение внеосевой точки 
предмета в виде конуса с круглым основанием (в гауссовой плоскости изоб-
ражения), причем острие конуса направлено в сторону осевой точки изобра-
жения, как показано на рис. 10.3. Аберрация «кома» представляет собой 
сферическую аберрацию изображения внеосевых точек предмета, незначи-
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тельно удаленных от оптической оси. Кома возникает из-за того, что узкие 
пучки света, падающие на сферическую отражающую или преломляющую 
сферическую поверхность в непараксиальной области, фокусируются в раз-
ные точки пространства вне гауссовой плоскости изображения. Причем по 
мере удаления точек падения пучков (кольцевых зон) на поверхности от оп-
тической оси точки фокусировки удаляются как от оптической оси, так и от 
гауссовой плоскости изображения. Поэтому в гауссовой плоскости изобра-
жение внеосевой точки предмета выглядит в виде кометы, что и явилось 
причиной названия аберрации термином «кома» (рис. 10.4).  

 

 

Рис. 10.3. Формирование аберрации «кома» линзы 
 

 

Рис. 10.4. Вид аберрации «кома» линзы 
 
 
При количественном описании комы указывают следующие величи-

ны: продольная величина комы 2ρ, поперечная величина комы 2ρ, где ρ – 
половина поперечного размера аберрационного изображения точки пред-
мета (пятна комы). 

3ρ 

 

2ρ 

F 
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Полевая аберрация «астигматизм» 

Аберрация «астигматизм» – это искаженное изображение внеосевой 
точки предмета в виде пятна эллиптической формы (в гауссовой плоскости 
изображения). При смешении плоскости изображения вдоль оптической 
оси изображение внеосевой точки представляется в виде небольших отрез-
ков в меридиональной и сагиттальной плоскостях поверхности. Аберрация 
«астигматизм» представляет собой сферическую аберрацию изображения 
внеосевых точек предмета, удаленных от оптической оси, в меридиональ-
ной и сагиттальной плоскостях, только фронт световой волны, формирую-
щей изображение внеосевой точки предмета, имеет разные радиусы кри-
визны в меридиональной и сагиттальной плоскостях поверхностей. Поэто-
му пучки света, падающие на сферическую отражающую или преломляю-
щую сферическую поверхность в непараксиальной области, фокусируются 
в разные отрезки, разнесенные в пространстве вне гауссовой плоскости 
изображения, причем по мере удаления точек падения пучков (кольцевых 
зон) на поверхности от оптической оси форма отрезков изменяется. В гаус-
совой плоскости изображение внеосевой точки предмета выглядит в виде 
эллипса, вытянутого в направлении к осевой точке изображения. 

На рис. 10.5 показано формирование линзой изображения внеосевой точ-
ки B предмета в виде отрезков в меридиональной и сагиттальной плоскостях 
(s – сагиттальная, m – меридиональная плоскости). Расстояние между центра-
ми отрезков Bm и Bs в меридиональной и сагиттальной плоскостях дает вели-
чину астигматической разности. Примерно посередине между этими отрезка-
ми образуется практически круглое изображение точки предмета (изображе-
ние точки, обладающее наименьшей астигматической аберрацией). 

 

 
Рис. 10.5. Формирование линзой  

астигматического изображения внеосевой точки В предмета 
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Полевая аберрация «кривизна поля» 

Аберрация «кривизна поля» проявляется в том, что наилучшее изоб-
ражение точек плоского предмета формируется не на плоскости, а на не-
которой вогнутой (выпуклой) поверхности, касающейся гауссовой плос-
кости изображения в осевой точке. Следует отметить, что для получения 
лучшего изображения уже при наличии комы плоскости изображения 
придается искривленная форма. Искривление поверхности изображения 
имеет место одновременно с возникновением аберрации астигматизма. 
Количественно кривизна поля (плоскости изображения) характеризуется 
полусуммой кривизны поля в меридиональной и сагиттальной плоскостях 
поверхности. Аберрация «кривизна поля» приводит к изображению точки 
предмета в виде эллипсоида в гауссовой плоскости изображения. Так как 
в настоящее время изображения предметов регистрируются плоской по-
верхностью фотоприемников, влияние этой аберрации на качество изоб-
ражения очень велико.  

Полевая аберрация «дисторсия» 

Аберрация «дисторсия» – аберрация, вносящая деформационные ис-
кажения в изображении предмета. На рис. 10.6, а представлено неиска-
женное изображение предмета в виде квадрата. На рис. 10.6, б и 10.6, в 
приведены примеры аберрации дисторсии в изображениях этого предмета 
(неискаженное изображение показано пунктирной линией): изображение 
квадрата искажено дисторсией, называемой бочкообразной, и изображе-
ние квадрата с дисторсией, называемой подушкообразной соответственно; 
δу – количественная величина искажения дисторсией. Хотя при наличии 
дисторсии изображение предмета получается резким в плоскости наблю-
дения, все же эта аберрация недопустима, например, при проведении точ-
ных геометрических измерений размеров по изображениям объектов, рас-
стояний по изображениям местности и т. д. 
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а)                     б)                      в) 

Рис. 10.6. Искажение изображения предмета аберрацией «дисторсия»:  
а) безаберрационное изображение;  

б) изображение, искаженное бочкообразной дисторсией;  
в) изображение, искаженное подушкообразной дисторсией 

 
 
Комбинацией сферических линз можно исправить у этой системы 

требуемые монохроматические аберрации третьего порядка. Более по-
дробно методы исправления хроматических и монохроматических абер-
раций и оптимизация характеристик различных оптических систем изу-
чаются в курсах «Теория оптических приборов» и «Прикладная оптика». 
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ЗАКЛЮЧЕНИЕ 

В связи с бурным развитием фотонной вычислительной оптики и воз-
никновением задач, в которых требуется выполнять заданные сложные 
преобразования световой волны, возникла необходимость изложения  
в дисциплине «Оптическая физика» свойств оптических элементов как 
преобразователей световой волны. В связи с этим в учебном пособии 
наряду с классическими оптическими преобразователями света, такими 
как зеркала и линзы, рассмотрены более многофункциональные дифрак-
ционные преобразователи, такие как дифракционные и голографические 
линзы.      

В учебном пособии использован единый подход к описанию преобра-
зующих свойств рефракционных и дифракционных оптических элементов, 
а именно метод характеристической функции, указаны границы примени-
мости этого метода. 
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