8.3 Современный рынок средств искусственного интеллекта

 

Коммерческий рынок продуктов искусственного интеллекта в мире в 1993 году оценивался примерно в 0,9 млрд. долларов; из них 600 млн. приходится на долю США. Выделяют несколько основных направлений этого рынка:

1) экспертные системы; теперь их часто обозначают еще одним термином - "системы, основанные на знаниях";

2) нейронные сети и "размытые" (fuzzy) логики;

3) естественно-языковые системы.

В США в 1993 году рынок между этими направлениями распределился так: экспертные системы - 62%, нейронные сети - 26%, естественно-языковые системы - 12%. Рынок этот можно разделить и иначе: на системы искусственного интеллекта (приложения) и инструментальные средства, предназначенные для автоматизации всех этапов существования приложения. В 1993 году в общем объеме рынка США доля приложений составила примерно две, а доля инструментария - примерно одну треть.

Причины, приведшие системы искусственного интеллекта к коммерческому успеху, следующие:

1. Специализация. Переход от разработки инструментальных средств общего назначения к проблемно/предметно специализированным средствам , что обеспечивает сокращение сроков разработки приложений, увеличивает эффективность использования инструментария, упрощает и ускоряет работу эксперта, позволяет повторно использовать информационное и программное обеспечение (объекты, классы, правила, процедуры).

2. Использование языков традиционного программирования и рабочих станций. Переход от систем, основанных на языках искусственного интеллекта (Lisp, Prolog и т.п.), к языкам традиционного программирования (С, С++ и т.п.) упростил "интегрированность" и снизил требования приложений к быстродействию и емкости памяти. Использование рабочих станций вместо ПК резко увеличило круг возможных приложений методов искусственного интеллекта.

3. Интегрированность. Разработаны инструментальные средства искусственного интеллекта, легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).

4. Открытость и переносимость. Разработки ведутся с соблюдением стандартов, обеспечивающих данные характеристики.

5. Архитектура клиент/сервер. Разработка распределенной информационной системы в данной архитектуре позволяет снизить стоимость оборудования, используемого в приложении, децентрализовать приложения, повысить надежность и общую производительность, поскольку сокращается объем информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном оборудовании.

Перечисленные причины могут рассматриваться как общие требования к инструментальным средствам создания систем искусственного интеллекта.

Из пяти факторов, обеспечивших их успех в передовых странах, в России, пожалуй, полностью не реализованы четыре с половиной (в некоторых отечественных системах осуществлен переход к языкам традиционного программирования, однако они, как правило, ориентированы среду на MS-DOS, а не ОС UNIX или Windows NT. Кроме того, в России и СНГ в ряде направлений исследования практически не ведутся, и, следовательно, в этих направлениях (нейронные сети; гибридные системы; рассуждения, основанные на прецедентах; рассуждения, основанные на ограничениях) нельзя ожидать и появления коммерческих продуктов.

Одно из наиболее популярных направлений последних пяти лет связано с понятием автономных агентов . Их нельзя рассматривать как "подпрограммы", - это скорее прислуга, даже компаньон, поскольку одной из важнейших их отличительных черт является автономность, независимость от пользователя. Идея агентов опирается на понятие делегирования своих функций. Другими словами, пользователь должен довериться агенту в выполнении определенной задачи или класса задач. Всегда существует риск, что агент может что-то перепутать, сделать что-то не так. Следовательно, доверие и риск должны быть сбалансированными. Автономные агенты позволяют существенно повысить производительность работы при решении тех задач, в которых на человека возлагается основная нагрузка по координации различных действий.

В том, что касается автономных (интеллектуальных) агентов, хотелось бы отметить один весьма прагматический проект, который сейчас ведется под руководством профессора Генри Либермана в Media-лаборатории MIT (MIT Media Lab). Речь идет об агентах, отвечающих за автоматическое генерирование технической документации. Для решения этой задачи немало сделал в свое время академик Андрей Петрович Ершов, сформулировавший понятие деловой прозы как четко определенного подмножества естественного языка, которое может быть использовано, в частности, для синтеза технической документации (это одно из самых узких мест в любом производстве). Группа под руководством профессора Либермана исследует возможности нового подхода к решению этой проблемы, теперь уже на основе автономных агентов.

Следующее направление в области искусственной жизни - генетическое программирование (genetic programming) - является попыткой использовать метафору генной инженерии для описания различных алгоритмов. Строки (string) искусственной "генетической" системы аналогичны хромосомам в биологических системах. Законченный набор строк называется структурой (structure). Структуры декодируются в набор параметров, альтернативы решений или точку в пространстве решений. Строки состоят из характеристик, или детекторов, которые могут принимать различные значения. Детекторы могут размещаться на разных позициях в строке. Все это сделано по аналогии с реальным миром. В природных системах полный генетический пакет называется генотипом. Организм, который образуется при взаимодействии генотипа с окружающей средой, носит название фенотипа. Хромосомы состоят из генов, которые могут принимать разные значения. (Например, ген цвета для глаза животного может иметь значение "зеленый" и позицию 10).

В генетических алгоритмах роль основных строительных блоков играют строки фиксированной длины, тогда как в генетическом программировании эти строки разворачиваются в деревья.

Ныне одним из лидеров в области генетического программирования является группа исследователей из Стэндфордского университета (Stanford University), работающая под руководством профессора Джона Коза. Генетическое программирование вдохнуло новую жизнь в хорошенько уже подзабытый язык LISP (List Processing), который создавался группой Джона Маккарти (того самого, кто в 60-е годы ввел в наш обиход термин "искусственный интеллект") как раз для обработки списков и функционального программирования. Кстати, именно этот язык в США был и остается одним из наиболее распространенных языков программирования для задач искусственного интеллекта.

Итак, в области искусственного интеллекта наибольшего коммерческого успеха достигли экспертные системы и средства для их разработки. В свою очередь, в этом направлении наибольшего успеха достигли проблемно/предметно специализированные средства. Если в 1988 году доход от них составил только 3 млн. долларов, то в 1993 году - 55 млн. долларов.

<<Предыдущий

Содержание

Следующий>>